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ABSTRACT 
 
 
 
The subject of this research is the buckling behavior of a simply supported 

rectangular plate, with a bulb-flat stiffener attached to one side of the plate.  The plate 

structure is subjected to axial compression that increases to the buckling load.  The 

stiffener cross-section has a thin web and a bulb-flat flange that extends to one side of the 

web.  Results of the investigation include planar property formulas for the asymmetric 

flange geometry, an analytic expression for the Saint Venant torsional constant of the 

flange cross-section, and an analytic expression for the buckling load corresponding to a 

tripping mode of the structure.  The torsional constant for the bulb-flat stiffener is 15% - 

23% higher than understood previously.  The analytic expression for the buckling load of 

the bulb-flat stiffened plates considered in this investigation yields values that are 2% - 

6% higher than finite element results.  It is also shown that the buckling load of a plate 

with a bulb-flat stiffener is 3% - 4% less than that of a plate with a T-flange stiffener with 

the same cross-sectional area.  At the onset of stiffener tripping, the torsionally superior 

bulb-flat tends to bend laterally, while the flexurally superior T-flange tends to twist. 
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EXECUTIVE SUMMARY 
 

 
 
 

Understanding the elastic stability of stiffened plate structures is of great interest 

in the design of bridges, buildings, automobiles, aircraft, naval vessels, and offshore 

platforms.  This work contributes formulas intended for the mechanical engineer, analyst, 

and educator involved in the analysis or design of the bulb-flat cross-section and simply 

supported stiffened rectangular plate. 

Chapter I comments on the intent and synopsis of this investigation.  Brief 

comments address the background for the study and literature search for published 

material related to the investigation.  A list of notation and conventions is included. 

Chapter II presents the application of multivariable calculus to derive planar 

property formulas for the bulb-flat cross-section.  Appendices A and B contain additional 

derivations and expressions related to the formulas.  The torsional constant is one of the 

key property values involved in the analysis of stiffened plate structures.  No exact 

expression exists in published literature for the torsional constant of the bulb-flat cross-

section.  Saint Venant’s work on an approximate expression for the torsional constant of 

a solid cross-section provides a method to develop an accurate one-term approximate 

formula applicable to bulb-flat cross-sections produced by Corus Group, one of the 

world’s leading producers of bulb-flat profiled metals.  Presented is a discussion on the 

idealization method to approximate the torsional constant. 

Chapter III presents the application of elasticity theory and energy methods to 

derive a general expression for the buckling load due to the stiffener tripping of a simply 

supported rectangular stiffened plate subjected to axial compression.  The general 

expression for the buckling load involves a constant called µ .  The buckling load and µ  

values are determined graphically.  The value of µ  indicates the stiffener deflection 

behavior at the onset of stiffener tripping.  Three special expressions provide initial 

approximations for the upper bound of the critical buckling load value.  Concepts applied 

in the derivation include extremum principles in mechanics, the energy criterion, calculus 



xvi 

of variations, the Rayleigh-Ritz method, and other topics in applied mathematics and 

physics.  The chapter also presents finite element analyses of several stiffened plate 

models.  The results are compared to predictions made using derived formulas.  MSC 

Nastran 2001/Patran 2001 r3 finite element software and the Maple 8 computer 

environment are the primary analysis and computational tools used in this investigation.  

Appendix C contains data tables used to represent the finite element models. 

Chapter IV summarizes the major findings and conclusions of this work.  This 

investigation: 

• Determines boundary equations for the bulb-flat flange cross-section. 

• Derives planar property value expressions. 

• Determines an approximate torsional constant expression that is more accurate 

than idealizing. 

• Demonstrates that the torsional property of the bulb-flat stiffener is better than 

previously understood.  The torque-carrying capacity of a bulb-flat stiffener 

(possessing no structural flaws) is greater than that of an area-equivalent angle 

stiffener. 

• Derives a general expression to predict the buckling load due to stiffener 

tripping of a simply supported rectangular stiffened plate subjected to axial 

compression. The predicted value is less than 6% higher than the finite 

element result. 

• Demonstrates that the buckling behavior of the bulb-flat stiffened plate is 

unlike that of the T-flange configuration.  The bulb-flat tends to buckle 

laterally and have a lower buckling load value than an area-equivalent T-

flange stiffened plate. 

Chapter IV lists future research directions that include: 

• Investigating methods to determine the µ  value by other than graphical 

means. 

• Investigating the use of conformal mapping to determine the exact expression 

for the bulb-flat torsional constant. 

• Investigating solutions to the torsion problem for asymmetric cross-sections. 
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• Conducting investigations of other flange cross-sections, multiple stiffener 

configurations, and grillages. 

• Conducting further investigations of the T flange by treating the flange as a 

thin web plate strip instead of a beam.  This treatment may achieve more 

accurate predictions for the T-flange buckling loads. 

• Developing algorithms that increase efficiency in stiffened plate analysis and 

design. 
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I. INTRODUCTION 
 
 
 

A. INTENT AND SYNOPSIS 
This work presents an investigation into the structural behavior and collapse of a 

stiffened plate panel where the stiffener is thin-webbed and the flange of the stiffener has 

a bulb-flat cross-section.  Chapter I includes brief comments on the background and 

motivation for the study.  Chapter II presents analytic expressions for the cross-sectional 

properties of the bulb-flat flange.  For brevity, Appendices A and B contain key 

derivations related to the property expressions.  Cross-sectional properties include area, 

centroid, moments of inertia, and torsional constant.  The property values for the flange 

cross-section are needed in the analytic formulas to determine the buckling load of the 

stiffened plate.  Chapter II presents a comparison of the bulb-flat stiffener configuration 

to the angle flange configuration to show that the torsional property of the bulb-flat 

stiffener is better than previously understood.  Chapter III presents a comparison of the 

bulb-flat stiffened plate configuration to the T-flange configuration to show that their 

buckling behaviors are different given the same cross-sectional area.  These comparisons 

provide better discernment of the buckling characteristics of stiffened plates.  Chapter III 

contains the development of a buckling load formula for a stiffened plate resulting from 

stiffener tripping.  The onset of stiffener tripping negates the stiffener’s support to the 

plate panel and leads to eventual collapse of the structure.  The aim is to develop an 

analytic expression for the buckling load of a rectangular stiffened plate, with one or 

more parallel bulb-flat stiffeners attached to one side, where the plate structure is 

subjected to axial compression.  The focus of the analysis is on a rectangular plate 

stiffened with one bulb-flat stiffener.  The results can be extended and applied to plate 

structures with more than one stiffener.  Energy methods are used, as an alternative to 

vector methods, to analyze the displacement and deflection behavior of the stiffened plate 

model.  The chapter contains finite element analyses of several stiffened plate models 

using MSC Nastran 2001/Patran 2001-r3 software.  Finite element analysis results are 

compared to formula results to assess formula accuracy and the validation of results 

presented earlier. 
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B. BACKGROUND 
Stiffened plates are basic structural components of many items.  Metal stiffened 

plates can be found on bridges, buildings, automobiles, aircraft, naval vessels, and 

offshore platforms.  In ship design, a stiffener is a metal structure composed of a web and 

flange.  Stiffeners placed on one or both sides of a plate add strength and hinder overall 

collapse of the plate panel.  Because of the structural complexity of stiffened plates, 

understanding their elastic instability is of great importance to ship designers and requires 

careful study. 

Stiffened plate investigations occur in three general forms: theoretical, using 

classical and emerging theory; numerical, using finite element methods and computer-

aided simulation; and experimental, using actual grillages.  It is enlightening to compare 

the results of all three general forms of investigation.  With regard to bulb-flat stiffened 

plates, it appears that most of what is known of their behavior comes from numerical and 

experimental investigations.  This investigation attempts to contribute new theoretical 

insights into the behavior of bulb-flat stiffened plates. 

The use of bulb-flat plate stiffeners in ship design is said to reduce building time 

and maintenance cost.  Companies that produce bulb-flat plate stiffeners manufacture 

each stiffener as a single unit, which reportedly results in less production cost compared 

to welded or fabricated stiffeners.  Additionally, the curved surface of the bulb-flat traps 

less moisture resulting in less corrosion.  The shape of the bulb-flat stiffener is much 

easier to inspect, weld, and paint.  These benefits save significant repair and maintenance 

costs over the lifetime of the vessel. 

Advocates of bulb-flat structures applaud the advantages gained by using bulb-

flats.  The Jiangyin Bridge in China and the Oresund Bridge that links Denmark to 

Sweden are major constructions incorporating bulb-flat geometry. 

C. LITERATURE SEARCH 
In his bibliography, Langhaar includes a list of books and articles that well serve 

the reader interested in general developments and special topics in mechanics.  Notable is 

the history and theory of plate stability discussed thoroughly in Bleich [1], who 

acknowledges G.H. Bryan as the originator of the study of plate stability under edge 
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compression.  Bleich’s discussion on rectangular plates under uniform axial compression 

and stiffened plates under axial compression are applicable to this investigation.  His 

demonstration on the theory of buckling of centrally loaded columns by torsion and 

flexure serves as a fundamental basis for the buckling analysis in Chapter III. 

A series of papers by Chou and Chapman [3] are noteworthy because they address 

the buckling behavior of bulb-flat stiffened plates.  Their study presents an improved 

design method, iterative in nature, for determining the buckling load of the structure 

against the torsional buckling of the stiffener.  They validate the study using FINASIC, a 

finite element program, and compare the results to actual tests on cruciform struts and 

box columns containing bulb-flat stiffeners. 

An interesting aspect of their theoretical analysis is the idealization of the bulb-

flat flange as an equivalent angle flange.  That is, they treat the bulb-flat cross-section 

like a rectangular cross-section in regards to the bulb-flat torsional and warping 

properties.  Chapter II addresses this treatment and shows that idealization imputes error 

in the calculation of the bulb-flat cross-section’s torsional rigidity.  Developing and using 

expressions that maintain the bulb-flat geometry yields more accurate cross-sectional 

property data resulting in a more accurate analysis. 

Other work relevant to this investigation includes research and a series of papers 

by Danielson et al. [5, 6, 7, 8, and 9] analyzing the tripping of a beam attached to a plate 

under lateral pressure loading.  His investigation includes the assumption that the 

stiffener behaves like a thin-walled open section beam.  Applying nonlinear beam theory, 

he obtains an analytic expression for the buckling of stiffened plate structures under 

longitudinal compression.  His work includes investigations of the buckling load of ship 

grillages under axial compression with and without lateral pressure [14 and 15].  He uses 

finite element based eigenvalue analysis to gain insight into the ways the buckling loads 

and modes vary given the grillage dimensions.  In new unpublished work, he extends his 

previous work by re-deriving buckling load formulas that incorporate different 

assumptions about buckling behavior. 
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D. NOTATION AND CONVENTIONS 

fA   Area of the flange 

sA   f wA A+ , Area of the stiffener 

wA   Area of the web 

D   ( )
3

212 1
Eh

ν−
, Bending stiffness coefficient 

E   Modulus of elasticity of the material (force/length2) 

G   ( )2 1
E

ν+
, Shear modulus, modulus of rigidity 

, ,xx yy cI I I  Moments of inertia about the axes and centroid in ( ),x y  

coordinate system (length4) 

xyI   Product of inertia about the origin in ( ),x y  coordinate system 

(length4) 

,xc ycI I   Moments parallel to the axes through the centroid in ( ),x y  

coordinate system (length4) 

xycI   Product of inertia about the centroid in ( ),x y  coordinate system 

(length4) 

,x yM M  Bending moments (force/length) or first moments (length3) 

R   Region defined by the cross-section of the flange (length2) 

fh   Height of flange (length) 

wh   Height of the web (length) 

sh   w fh h+ , Height of the stiffener (length) 

m   Slope of a line or line segment 

1,r r   Radius of curvature (length) 

bft   Thickness of the flange bulb (length) 

ft   w bft t+ , Maximum thickness of flange (length) 
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pt   Thickness of plate (length) 

wt   Thickness of the web (length) 

,x y   Bulb-flat flange coordinate system 

,c cx y   Bulb-flat flange coordinate system where the centroid coincides 

with the origin of the coordinate system 

1 2 3, ,x x x  Plate structure coordinate system 

,α θ   Angle (radians) 

ν   Poisson’s ratio 

σ   Normal stress (force/length2) 
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II. BULB-FLAT FLANGE CROSS-SECTION PROPERTIES 
 
 
 

A.  INTRODUCTION 
A wealth of knowledge exists on the behavior of stiffeners with common 

geometries such as I, T, Z, angle, channel, and flat-bar cross-sections.  These common 

geometries possess certain cross-sectional properties that are relatively easy to derive.  

Studying uncommon cross-sections, such as the bulb-flat cross-section, is often difficult 

because obtaining the section properties of such cross-sections requires considerably 

more effort. 

This chapter presents expressions to determine the planar properties of the bulb-

flat cross-section.  Subsequent analysis of the stiffened plate structure requires knowledge 

of the planar property values for a specified cross-section. 

B.  CROSS-SECTIONAL BOUNDARY AND PLANAR PROPERTIES 

Consider the cross-section of a bulb-flat that extends to one side of the web as 

shown in Figures 1-3.  Figure 1 shows the entire stiffener cross-section composed of the 

bulb-flat flange and thin web.  Figure 2 and Figure 3 show only the flange horizontally 

oriented.  Five independent variables ( wt , bft , r , 1r , and α ) uniquely determine the 

flange boundary.  Using both Figure 2 and Figure 3, the following labeling is established.  

The variable wt  denotes the web thickness defined by the vertical distance between point 

4 and point 5.  The variable bft  denotes the bulb thickness defined by the vertical distance 

between point 9 and a point horizontal to point 5.  The total flange thickness (at its 

maximum value) is denoted by f w bft t t= +  defined by the vertical distance between point 

9  and the line formed by points 3 and 4.  The corners of the cross-section have radii of 

curvature r  and 1r .  Points 5-6-7 and 8-9-10 define the corners with radius of curvature 

r .  Points 1-2-3 define the corner with radius 1r .  The cross-section has a flat portion 

defined by the points 7 and 8, that slopes α  degrees from the y -axis. 
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Figure 1 Bulb-flat stiffener cross-section 
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Figure 2 Bulb-flat flange geometry 
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Let fh  denote the flange height.  The boundary of the flange includes two vertical sides 

0x =  and fx h= , where 

 ( )tan 1 2 tan 2secf bfh t rα α α= + − +  (1) 

and 0 / 2α π< < 1 (see Appendix A).  The upper and lower boundaries of the cross-

section are defined by the following functions.  The upper boundary of the flange cross-

section is given by: 

( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( )

22
1

2

22
3

,                             0 cos

cot ,    cos cos

,                                  cos

cot csc 1
w bf

w bf f

w f f f

f x t t r r x r x r r

f x x t t r r r x h r

f x t r r x h h r x h

f x

α

α α αα α

α

= + − + − − ≤ < +

= − + + + + ≤ < −

= + − − − − ≤ ≤



= + −



 (2) 

The lower boundary of the flange cross-section is given by: 

( ) ( ) ( )
( )

22
1 1 1 1 1

2 1

,            0

0,                                       f

g x r r x r x r
g x

g x r x h

 = − − − ≤ <= 
= ≤ ≤

 (3) 

Given the upper, lower, and vertical boundaries, the cross-section of the flange is 

the bounded region R  defined by 0 fx h≤ ≤ , ( ) ( )g x y f x≤ ≤ , with ( )f x  and ( )g x  on 

0, fx h ∈   .  The flange cross-sectional planar properties can be calculated from the 

following integral expression where ,m n  are nonnegative integers (see Appendix B for 

details of the integral derivation): 

( )

( )

( ) ( ){ }1 1

0 0

1
1

f fh hf x
n nm n m n m

R g x

x y dA x y dy dx x f x g x dx
n

+ +
   = = −   +∫∫ ∫ ∫ ∫  (4) 

Substitution of expressions (2) and (3) into expression (4) yields 

                                                 
1 As 0α → , the flange geometry resembles an angle flange with a rounded end of radius r  whose 

cross-section properties could be approximated with an equivalent rectangle.   
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( ) ( )

( )

( ) ( )

( ) ( )

2 1

2
cos

1

cos
0

1

2
0

12
1

2

1 sin cos cos
1

1 cot cot csc
1

1 sin cos cos
1

1 1 sin 1 cos cos
1

f

nmm n
w bf

R

h r
nm

w bf
r r

m n
f w

m nm n

x y dA r r t t r r r d
n

x x t t r r r dx
n

h r t r r r d
n

r d
n

π α

π

α

α

πα

π

θ θ θ θ

α α α

θ θ θ θ

θ θ θ θ

−
+

−

−
+

+

+

−

++ +

−

= + + − +
+

+ − + + + + −
+

+ + + −
+

− + −
+

∫∫ ∫

∫

∫

∫

 (5) 

where 

 
( )tan 1 2 tan 2sec

0 , , 0
2 2 2

f bf

f

h t r

x h

α α α
π π πα θ

= + − +

< < − ≤ ≤ ≤ ≤
 

Throughout this investigation, the planar property values for the bulb-flat flange are 

calculated using integral expression (5).  Appendix B contains a summary of the planar 

property formulas.  For brevity, the expansion of each general planar property formula is 

omitted. 

Integral expression (5) can be specialized for a class of bulb-flat flange cross-

sections by assigning a value to one or more of the variables.  For example, by setting 

/ 6α π= , integral expression (5) defines planar property formulas for a class of bulb-flat 

cross-sections with a 30o slope.  Additionally, if the radius of curvature of the cross-

section corner 1r  is assumed to be one-tenth of the web thickness wt  ( )1 /10wr t= , the 

integral defines planar property formulas for a specific type of the 30o slope cross-

sections.  In this case, terms involving 1r  become negligible for this particular class of 

flange cross-sections.  Cross-sectional planar property values for this special class can be 

calculated from the following integral expression (6) where ,m n  are nonnegative 

integers, / 6α π= , and the term involving 1r  is neglected: 
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( ) ( )

( )( )

( ) ( )

3 1

2

3 31
3 6

1

31
2

0
1

3

1 sin cos cos
1

1 3 1 3
1

1 sin cos cos
1

bf

nmm n
w bf

R

t r
n

m
w bf

r

m n
f w

x y dA r r t t r r r d
n

x x t t r dx
n

h r t r r r d
n

π

π

π

θ θ θ θ

θ θ θ θ

+

−

 
+ +  
  +

 
+  

 

+

−

= + + − +
+

+ − + + + +
+

+ + + −
+

∫∫ ∫

∫

∫

 (6) 

where 

 

3 2 31
3 3

, 0
2 2

f bf

f

h t r

x hπ πθ

 
= + +  

 

− ≤ ≤ ≤ ≤

 

The following formulas are algebraic expansions of expression (6) for the specialized 

class of bulb-flat flanges.  The flange area and centroid formulas are 

2 22 3 3 3 31 1 1
4 3 3 6 3f w bf bf w bfA r t t r t t tπ      = − − + + + + + +                

 

3 2 2

2 2 3

3 2 7 2 3 3 31
4 9 9 6 3 3 18 1

2 3 1 3 1 1
3 6 6 18

w bf

f
w bf bf w bf bf

r r t r t

x
A

rt t rt t t t

π π π      
− − + + + + −                 =     + + + + + +           

 

3 2 2

2 2

2 2 3

11 3 7 5 5 31 1
18 12 6 4 12 3

1 3 3 1 3 11
2 3 3 2 6

3 3 3
6 6 18

w bf

w w bf bf
f

w bf w bf bf

r r t r t

y rt rt t rt
A

t t t t t

π π π     − + + − + − −             
       = + + + + + +                 
 
+ + + 
  

 



 13

Formulas for the moments of the specialized class of flanges are 

( )

4 3

2 2 2

3 2 2

5 5 11 3 7 11 3 5 51
16 3 9 6 18 3 6

2 3 5 5 31 2 1
4 3 6 12 3

2 3 1 3 3 11
9 3 3 9 3

xx w bf

w w bf bf

w w bf w bf

I r t t r

t t t t r

t t t t t

π π π

π π π

     = − + + + − + + −                
     + − + + − − + + − + −               

    
+ + + + + + +       

    

3

4 2 2 3 33 3 3 3
36 6 9 9

bf

bf w bf w bf w bf

t r

t t t t t t t

 
    

+ + + +

 

4 3

2 2 2 3

3

11 3 2 3 2 13 26 3 5 43 3 4 2 3
27 9 9 144 27 3 54 3 9

7 3 4 1 3 2 3 1 3 1
9 3 3 18 9 3 27 9

3
27

yy w bf

w bf bf w bf bf

w bf

I r t t r

t t t r t t t r

t t

π π π

π

      += − + + + + + + −                  
          ++ + + − + + + +                              

+ + 43
108 bft

 

 ( )2 2
c xx yy fI I I A x y= + − +  

C. TORSIONAL RIGIDITY 

The torsion of a beam is the application of twisting moments at both ends of the 

beam.  In the absence of side surface tractions and if the ends of the bar are free to warp, 

the beam experiences pure torsion.  The Saint-Venant constant for uniform torsion or 

torsional constant J  is the ratio of an applied beam twisting moment tM  to the product 

of the shear modulus (modulus of rigidity) G  and the beam twist per unit length θ . 

 tMJ
Gθ

=  (7) 

The role of the quantity GJ  (torsional rigidity) in the twisting of a beam is similar to the 

role of the quantity EI  (flexural rigidity) in the bending of a beam. 
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1.  Exact Value Using the Stress Function Method 

One method of determining the torsional rigidity of a cross-section (solving the 

torsion problem) is by finding the stress function2.  Analysis of torsional behavior 

requires finding the stress function Φ , which is an exact solution to Poisson’s equation: 

 

2 2
2

2 2 -2  in  

0 on the boundary of 

G R
x y

R

θ∂ Φ ∂ Φ∇ Φ = + =
∂ ∂

Φ =
 (8) 

Donaldson [10, p. 376] shows the torsional constant as 

 2

4

R

J dA= − Φ
∇ Φ ∫∫  (9) 

The following example illustrates using the stress function method to determine 

the torsional constant.  Let the boundary of an elliptic cross-section with the origin 

coinciding with the centroid be given by 

 
2 2

2 2 1 0x y
a b

+ − =  (10) 

which has area and inertia properties 

 ( )2 21
4cA ab I ab a bπ π= = +  

Take the stress function in the form 

 
2 2

2 2 1x yc
a b

 
Φ = + − 

 
 (11) 

where c  is a constant.  Hence, 

 
2 2

2
2 2 2 2

1 12 2 2a bc c G
a b a b

θ+ ∇ Φ = + = = − 
 

 (12) 

After solving for c , equation (11) satisfies the conditions of (8) and is zero on the 

boundary of the region when 

                                                 
2 Introduced by Ludwig Prandtl. 
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2 2

2 2

a bc G
a b

θ= −
+

 

Therefore 

 

2

2 2

2 2

2 2

3 3
2 2

2 2

2 2 3 3

2 2 2 2

4

4 1
1 12

2 1 1 1 1
1 1 4 4

2 1 1
4 4

A

A

J dA

x yc dA
a bc

a b

a b ab ab
a b

a b
a b a bab ab ab

a b a b

π π π

ππ π π

= − Φ
∇ Φ

 
= − + −    + 

 
    = − + −          + 

 

 = − + − = + + 

∫∫

∫∫

 (13) 

When a b= , the results correspond with the known formula 4 / 2J aπ=  for the circular 

cross-section. 

The torsion problem has been solved exactly for other common cross-sectional 

forms such as the square, rectangle, and equilateral triangle.  The torsional constant can 

be obtained relatively easily for flanges with cross-sections that are symmetric about at 

least one axis.  For flanges with arbitrary cross-sections, finding the exact solution is 

quite difficult.  The reason for this is, as Donaldson [10, p. 386] notes, 

It is not difficult to write expressions that satisfy the governing differential 
equation, and it is not difficult to write expressions that satisfy the 
boundary conditions.  What is difficult is to do both simultaneously. 

The uncommon shape and nonsymmetrical cross-section of the bulb-flat flange make it 

difficult to find a stress function that satisfies simultaneously both conditions of (8).  

Several methods exist that attempt to simplify the search for the stress function of 

“difficult” cross-sections.3  For an arbitrary cross-section, the general solution of the 

torsion problem is found using conformal mapping by mapping the region upon the 

interior and boundary of a circle, then solving the problems of Dirichlet and Neumann for 

                                                 
3 Methods are generally included in references that discuss solutions to Poisson’s equation or the 

torsion problem.  Solving Poisson’s equation using conformal mapping is discussed in Henrici [11, pp. 
372-377]. 
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the circular region.  Approximation methods offer alternatives to solving Poisson’s 

equation directly for the bulb-flat flange cross-section. 

2.  Approximate Expressions: Lower and Upper Bounds 

Washizu [24] uses variational methods and includes a computational technique 

for obtaining accurate lower and upper bounds for torsional rigidity.  His method applies 

the principles of minimum potential and complementary energy.  Stakgold [20, pp. 579-

583] presents a similar approach where he derives 

 ( ) ( )

2

2 2
2 2

4
R

x y
Rx y

R

w dx dy
J v v dx dy

w w dx dy

 
 
  ≤ ≤ +

+

∫∫
∫∫∫∫

 (14) 

where w  vanishes on the boundary of the region and v  satisfies 

 
2 2

2 2 2v v
x y

∂ ∂+ = −
∂ ∂

 (15) 

on the cross-sectional region.  The upper bound is smallest if the region’s centroid 

coincides with the origin.  Stakgold further shows that the bounds can be improved by 

adding certain harmonic functions to v .  It should be noted that the calculations required 

to apply this method to uncommon cross-sections is quite involved. 

The follow examples illustrate establishing bounds using (14) and (15).  To 

establish a lower bound for the circular cross-section, let w  be the following function 

that vanishes on the circular boundary of radius r  whose center coincides with the origin. 

 ( ) 2 2 2,w x y x y r= + −  (16) 
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A lower bound is 

 
( )

( )

2 2

2 2 2

2 2 2 2

24
422 4

4

4 4

4 4

2
2

2

circle circle

circle circle

R R

x y
R R

w dx dy x y r dx dy

w w dx dy x y dx dy

r rI Ar r I
rI

π π
π

π

   
+ −      

   =
+ +

 
− −  = = = =

∫∫ ∫∫

∫∫ ∫∫
 

For an upper bound, let 

 ( ) ( )2 21,
2

v x y x y= − +  (17) 

that satisfies condition (15).  An upper bound is 

 ( ) ( )2 2 2 2

circle circle

x y
R R

v v dx dy x y dx dy I+ = + =∫∫ ∫∫  

The lower and upper bounds confirm the fact that for any circular cross-section, 

I J I≤ ≤  or J I= ; that is, the torsional constant equals the moment of inertia about the 

centroid. 

For the square cross-section, with sides of length 2a , establish a lower bound by 

choosing w  to be the following function, which vanishes on the boundary centered on 

the origin: 

 ( ) ( )( )( )( ) ( )( )2 2 2 2,w x y x a x a y a y a x a y a= + − + − = − −  (18) 

A lower bound is 

 
( )

2 26

4
4

8
2 2

164 4
9 20 2.2222

256 9
45

a a

a a
a a

x y
a a

aw dx dy
a a

a
w w dx dy

− −

− −

   
   
   = = =

+

∫ ∫

∫ ∫
 (19) 
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An upper bound is established by letting v  be the same as equation (17). 

 ( ) ( )
4

2 2 2 2 48 2.6666
3

a a a a

x y
a a a a

av v dx dy x y dx dy a
− − − −

+ = + = =∫ ∫ ∫ ∫  (20) 

Combining expressions (19) and (20), establishes the following lower and upper bounds 

for the torsional constant of a square cross-section: 

 4 42.2222 2.6666a J a≤ ≤  (21) 

The exact value of the torsional constant for a square cross-section is 42.2496J a= , as 

shown later. 

Application of the lower and upper bounds method to the bulb-flat flange cross-

section involves rather arduous calculations.  Because the upper bound is smallest if the 

region’s centroid coincides with the origin, the boundary equations (2) and (3) must be 

modified so that the centroid and origin coincide.  Let the flange cross-section defined by 

equations (2) and (3) be modified for the bounded region cR  (the subscribe c  indicating 

the centroid coincides with the origin) defined by c fx x h x− ≤ ≤ − , ( ) ( )c c cg x y f x≤ ≤ , 

with ( )cf x  and ( )cg x  on ,c fx x h x ∈ − −  .  A function w  that vanishes on cR  is 

 
( ) ( ) ( ) ( )

( ) ( ) ( )( )
1 2 3

1 2

,c c c c c c c c

c c c c c c f

w x y y f x y f x y f x

y g x y g x x x x h x

     = − − − ×     

   − − + − +   
 (22) 

Using (22) in (14) results in very complicated expressions and provides only modest 

gains to establishing accurate bounds for the bulb-flat flange torsional constant.  Other 

approximation methods may provide simpler means to obtain the torsional constant for 

the bulb-flat flange cross-section. 
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3.  Approximate Expressions: k*A4/I 

Saint-Venant4 offers an approximate expression for the torsional constant of any 

solid section (except certain common sections): 

 
4

2

1
4 c

AJ
Iπ

≈  (23) 

where A  is the cross-sectional area and cI  is the moment of inertia about the centroid.  

Let k  be defined as  

 4
cI Jk
A

=  (24) 

for a cross-section where expressions for the area, moment of inertia about the centroid, 

and torsional constant are known.  Consider the following table showing the results of 

(24) for common cross-sections. 

Table 1 Saint Venant approximate expression for common cross-sections 

Cross-

Section 
Parameter A  cI  J  4

cI Jk
A

=  

Circular r  2rπ  41
2

rπ  41
2

rπ  
2 8

4 8 2

1 0.02533
4 4

r
r

π
π π

= ≈  

Elliptic ,a b  abπ  ( )2 21
4

ab a bπ +
3 3

2 2

a b
a b
π

+
 

2 4 4

4 4 4 2

1 0.02533
4 4

a b
a b

π
π π

= ≈

Square 2a  24a  48
3

a  42.2496a 0.02343  

 

For the given cross-sections, the value of k  is a fixed constant that does not depend on 

the parameters of the cross-section. 

In other cross-sections, the value of k  may vary as the parameters that define the 

cross-section vary.  For rectangular cross-sections with length 2b  and thickness 2t , k  

                                                 
4 Discussed by Saint-Venant, “Sur une formule donnant approximativement le moment de torsion”, 

Comptes Rendus, vol. 88, 1879, pp. 142-154, and in Timoshenko and Goodier [22, pp. 301-302]. 
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varies for different values of the ratio /t b .5  In those cases, the torsional constant can be 

obtained from 

 ( )( )3
5 5

1,3,5,

1 192 12 2 1 tanh
3 2n

t n bJ b t
b n t

π
π

∞

=

 
= − 

 
∑  (25) 

developed in Timoshenko and Goodier [22, pp. 309-313].  For a square cross-section, 

(25) yields the J  expression shown for the square cross-section in Table 1.  For 

rectangular cross-sections with parameters 2t  and 2b , the area and inertia properties are 

 ( )2 244
3cA bt I bt b t= = +  

The expression for k  is thus 

 
2

4 2 5 5
1,3,5,

1 192 11 1 tanh
36 2

c

n

I J t t n bk
A b b n t

π
π

∞

=

  
= = + −  

  
∑  

Pilkey and Chang [18, p. 103] express the torsional constant formula for rectangular 

cross-sections as 

 ( )( )
5

3
5

1 2 2 (1 0.63 0.052 ),    where   
3

t tJ b t t b
b b

≈ − + ≤  (26) 

which is a simplification of (25).  Expression (26) gives adequate accuracy and is used in 

the analysis presented in later sections.  For elongated rectangular cross-sections, the 

torsional constant can be obtained from 

 ( )( )31 2 2    where   
3

J b t t b≈  (27) 

As the ratio /t b  approaches zero, then (26) approaches (27). 

                                                 
5 This effect can be deduced from discussions found in Timoshenko and Goodier [22, pp. 309-313], in 

Donaldson [10, pp.390-394], or in Oden [16, p. 44]. 
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It would be useful to identify classes or sub-classes of bulb-flat cross-sections 

possessing a fixed constant k .  Corus Group6 provides a special profile brochure [4] that 

contains technical data on 59 bulb-flat cross-sections commonly requested.  The 

following tables (Table 2 and Table 3) reflect all 59 bulb-flat cross-sections published in 

the brochure.  The cross-sections represent a class of bulb-flat flanges where / 6α π=  

and the values for wt , bft , and r  are as given in the tables.  The brochure states a 

tolerance level for the value of 1r .  For ease of calculations, it is assumed that 1 /10wr t= , 

which obeys the tolerance level stated in the brochure. 

                                                 
6 Corus Group was formed in 1999 through the merger of British Steel and Koninklijke Hoogovens.  

The company is a leading international metal company and one of the world’s leading producers of bulb-
flat profiled metals. 
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Table 2 Finite element results for bulb-flat flange cross-sections 

1Variables , , and , are given, while (1/10) and / 6 radians.w bf wt t r r t α π= =  

Model wt  bft  r  fA  cI  J  k  

 mm mm mm mm2 mm4 mm4  
1 6.0 17.0 5.0 335.59 21903 13339 0.023035 
2 7.0 17.0 5.0 356.15 24609 15065 0.023043 
3 8.0 17.0 5.0 376.70 27480 16915 0.023084 
4 6.5 19.0 5.5 410.79 32907 19936 0.023038 
5 7.0 19.0 5.5 422.19 34720 21076 0.023032 
6 8.0 19.0 5.5 444.97 38492 23475 0.023049 
7 10.0 19.0 5.5 490.54 46667 28716 0.023144 
8 7.0 22.0 6.0 519.50 53120 31583 0.023034 
9 8.0 22.0 6.0 545.10 58392 34823 0.023031 
10 9.0 22.0 6.0 570.69 63911 38262 0.023054 
11 11.5 22.0 6.0 634.66 78896 47656 0.023175 
12 8.0 25.0 7.0 681.93 91182 54641 0.023039 
13 9.0 25.0 7.0 711.41 99088 59532 0.023030 
14 10.0 25.0 7.0 740.89 107316 64696 0.023042 
15 11.5 25.0 7.0 785.09 120303 72912 0.023088 
16 8.5 28.0 8.0 849.67 141249 85076 0.023056 
17 9.0 28.0 8.0 866.36 146751 88465 0.023045 
18 10.0 28.0 8.0 899.72 158047 95505 0.023035 
19 11.0 28.0 8.0 933.08 169751 102873 0.023038 
20 12.0 28.0 8.0 966.43 181882 110576 0.023055 
21 9.0 31.0 9.0 1035.54 209455 126681 0.023075 
22 10.0 31.0 9.0 1072.79 224516 135976 0.023049 
23 11.0 31.0 9.0 1110.03 240055 145706 0.023038 
24 12.0 31.0 9.0 1147.27 256095 155831 0.023035 
25 9.5 34.0 10.0 1239.52 299704 181896 0.023095 
26 10.0 34.0 10.0 1260.02 309570 187930 0.023076 
27 11.0 34.0 10.0 1301.21 329720 200430 0.023052 
28 12.0 34.0 10.0 1342.34 350449 213450 0.023039 
29 10.0 37.0 11.0 1461.61 416284 253399 0.023114 
30 11.0 37.0 11.0 1506.63 441894 269103 0.023079 
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Table 3 Finite element results for bulb-flat flange cross-sections (cont) 

1Variables , , and , are given, while (1/10) and / 6 radians.w bf wt t r r t α π= =  

Model wt  bft  r  fA  cI  J  k  

31 12.0 37.0 11.0 1551.64 468166 285438 0.023054
32 10.5 40.0 12.0 1701.82 563855 344119 0.023133
33 11.0 40.0 12.0 1726.27 579944 353915 0.023113
34 12.0 40.0 12.0 1775.17 612687 374094 0.023081
35 13.0 40.0 12.0 1824.07 646209 395021 0.023058
36 11.0 43.0 13.0 1960.15 747463 457230 0.023151
37 12.0 43.0 13.0 2012.93 787681 481743 0.023113
38 13.0 43.0 13.0 2065.72 828771 507140 0.023082
39 11.5 46.0 14.0 2236.59 972529 596102 0.023167
40 12.0 46.0 14.0 2264.93 997033 610924 0.023146
41 13.0 46.0 14.0 2321.60 1046772 641379 0.023111
42 14.0 46.0 14.0 2378.26 1097519 672871 0.023084
43 12.0 49.0 15.0 2531.15 1244856 764377 0.023182
44 13.0 49.0 15.0 2591.71 1304401 800436 0.023142
45 14.0 49.0 15.0 2652.26 1365058 837738 0.023110
46 15.0 49.0 15.0 2712.81 1426867 876255 0.023085
47 12.5 53.5 16.5 2990.36 1736393 1069001 0.023213
48 13.0 53.5 16.5 3023.55 1774843 1092092 0.023193
49 14.0 53.5 16.5 3089.94 1852703 1139236 0.023154
50 15.0 53.5 16.5 3156.31 1931884 1187887 0.023123
51 16.0 53.5 16.5 3222.69 2012431 1237937 0.023097
52 13.0 58.0 18.0 3487.42 2360220 1456675 0.023243
53 14.0 58.0 18.0 3559.63 2458317 1515332 0.023202
54 15.0 58.0 18.0 3631.84 2557909 1575695 0.023166
55 16.0 58.0 18.0 3704.05 2659049 1637762 0.023135
56 14.0 62.5 19.5 4061.35 3199092 1977224 0.023249
57 15.0 62.5 19.5 4139.39 3322389 2050964 0.023209
58 17.0 62.5 19.5 4295.45 3574247 2204506 0.023145
59 20.0 62.5 19.5 4529.52 3966020 2449749 0.023082

Mean Value 0.023099
Standard Deviation 5.95E-5

Median Value 0.023084
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From Table 2 and Table 3, values for k  appear “nearly” fixed for the specified 

class of bulb-flat flange cross-sections.  When applied to the bulb-flat flange cross-

section, the Saint Venant approximation (23) with 21/ 4 0.0253k π= ≈  generates torsion 

values that are 9% to 10% larger than values obtained from finite element methods.  

However, based on the above tables, the following approximate expression yields 

reasonably accurate values for the torsional constant of flanges within the specified class 

when compared to finite element data. 

 
4

0.0231 f
f

c

A
J

I
≈  (28) 

Hence, expression (28) serves as a working formula that approximates the torsional 

constant for the bulb-flange cross-sections within the specified class and is used 

throughout the remainder of this investigation. 

4.  Idealization 
Success in determining the exact expression of Saint Venant’s torsional constant 

is limited to simple cross-sections.  It is common practice to use known exact expressions 

for simple cross-sections to approximate more difficult and multiply connected cross-

sections by idealization.  Idealizing is attributing a cross-section, whose properties may 

be partially known, with the known properties of a simple cross-section.  Caution is 

required when applying this method to idealize the bulb-flat flange as an area-equivalent 

angle flange.  The following illustrates mathematically the need for caution. 

Consider a solid circular cross-section of radius r  with area and torsional 

properties, respectively 

 
4

2
circle circle 2

rA r J ππ= =  

An area-equivalent square cross-section with sides 2l  in length has area and torsional 

properties, respectively 

 2 4
square square4 2.2496A l J l= =  
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Since circle squareA A= , then 

 
2

l rπ=  

Hence, 

 ( )
4 4

4
square circle

2.24962.2496 2.2496 0.8834
2 8 2

rJ l r Jπ π π   
= = = ≈       

 

This shows that idealizing a circular cross-section as an area-equivalent square cross-

section reduces the Saint Venant torsional constant of the cross-section by nearly 12%. 

A similar argument shows that idealizing an elliptical cross-section as an area-

equivalent rectangular cross-section reduces the Saint Venant torsional constant of the 

cross-section when both cross-sections have high aspect ratios.  The aspect ratio for a 

rectangle is the length to thickness ratio /l t .  A high aspect ratio means the cross-section 

is very long compared to its thickness.  The aspect ratio for an ellipse depends on the 

ratio of the major axis length to the minor axis length.  Consider an elliptical cross-

section centered on the origin with semimajor axis a  and semiminor axis b  having area 

and torsional properties 

 
3 3

ellipse ellipse 2 2

a bA ab J
a b
ππ= =

+
 

An area-equivalent rectangular cross-section of width 2l  and thickness 2t , assuming 

t l , has area and torsional properties 

 
3

rectangle rectangle
164

3
ltA lt J= ≈  

Figure 4 Idealizing an ellipse as a rectangle 
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As commonly done in this case, assume the two cross-sections have the same width 

l a= .  Since ellipse rectangleA A= , then 

 4 4
4

lt ab at ab t bππ π= ⇒ = ⇒ =  

Hence, 

3

3 2 2 2 3 3 2 2 2

rectangle ellipse2 2 2 2

16
16 4

3 3 12 12

a b
lt a b a b a bJ J

a a b a

π
π π π

 
      + + ≈ = = =    +    

 

The effect on the torsional constant due to the idealization depends on the relationship of 

the semimajor and semiminor axis lengths.  As the ratio of the semiminor axis to 

semimajor axis approaches zero, / 0b a → , then 

 
2 2 2 2

2 0.8225
12 12

a b
a

π π + → ≈ 
 

 

Even though methods exist to minimize or eliminate the potential loss of torque capacity 

by idealization (detailed discussion omitted), the argument is that application of the 

idealization method requires forethought. 

D. VALIDATION USING FINITE ELEMENT MODELS 
Analysis of several finite element models using MSC Nastran 2001/Patran 2001-

r3 software serves to validate the property formulas.  The property values from formulas 

are compared to values from finite element models.  In each finite element bulb-flat 

flange model, ten distinct points establish the boundary of the bulb-flat flange cross-

section.  Straight lines and 3-point arc curves are defined from the boundary points.  A 

single trimmed surface is defined from the curves.  The arbitrary shape option in the 

software’s beam library is used with the maximum allowable curvature error set at 0.005.  

Maple 8 computer environment and a handheld calculator are used to calculate formula 

results.  Table 4 presents planar property values for several bulb-flat flanges using 

expression (28), formula (76) in Appendix A, and formulas (80) - (91) in Appendix B.  
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The table presents a comparison of the formula values to data obtained from MSC 

Nastran/Patran finite element models of the cross-sections. 

 

  

Figure 5 MSC Patran graph and data of a horizontal bulb-flat flange 

  
Figure 6 MSC Patran graph and data of an area-equivalent angle flange 
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Table 4 Comparison of flange values 

1Variables , , and , are given, while (1/10) and / 6 radians.w bf wt t r r t α π= =  

Percent change = 
( )

( ) 100
FE

f
FE

J J
J
−

×  

* - indicates an absolute percent change of less than 0.01%. 

Source wt  bft  r  x  y  fA  cI  Percent 
change fJ  Percent 

change 

 mm mm mm mm mm mm2 mm4  mm4  
Formula 6.0 17.0 5.0 8.163 9.384 335.59 21904 * 13376 0.28% 
FE(bulb)    8.163 9.384 335.59 21903 * 13339 * 
FE(angle)    7.730 10.267 335.59 24199 10.48% 13973 4.75% 
Formula 8.0 17.0 5.0 8.397 10.251 376.71 27481 * 16928 0.08% 
FE(bulb)    8.397 10.251 376.70 27480 * 16915 * 
FE(angle)    8.010 11.035 376.71 30560 11.21% 16026 -5.26% 
Formula 7.0 19.0 5.5 9.081 10.608 422.19 34722 * 21137 0.29% 
FE(bulb)    9.081 10.607 422.19 34720 * 21076 * 
FE(angle)    8.611 11.581 422.19 38450 10.74% 21586 2.42% 
Formula 10.0 19.0 5.5 9.408 11.922 490.54 46670 * 28661 -0.19% 
FE(bulb)    9.408 11.921 490.54 46667 * 28716 * 
FE(angle)    9.000 12.754 490.54 52004 11.44% 26362 -8.20% 
Formula 7.0 22.0 6.0 10.036 11.789 519.51 53122 * 31674 0.29% 
FE(bulb)    10.036 11.789 519.50 53120 * 31583 * 
FE(angle)    9.486 12.992 519.51 58776 10.65% 33449 5.91% 
Formula 9.0 22.0 6.0 10.287 12.642 570.70 63914 * 38339 0.20% 
FE(bulb)    10.287 12.642 570.69 63911 * 38262 * 
FE(angle)    9.784 13.735 570.70 71244 11.47% 36965 -3.39% 
Formula 8.0 25.0 7.0 11.574 13.429 681.94 91186 * 54785 0.26% 
FE(bulb)    11.574 13.428 681.93 91182 * 54641 * 
FE(angle)    10.939 14.786 681.94 100732 10.47% 58328 6.75% 
Formula 10.0 25.0 7.0 11.829 14.281 740.89 107321 * 64856 0.25% 
FE(bulb)    11.829 14.281 740.89 107316 * 64696 * 
FE(angle)    11.243 15.528 740.90 119359 11.22% 63541 -1.79% 
 

Examination of Table 4 reveals several noteworthy aspects.  The formula results  

agree with the finite element results for the bulb-flat flange.  The two independent 

sources agree almost exactly on the centroid locations ( ),x y , the flange area values fA , 

and the values for the polar moments cI .  Though not independent, the formula values for 

the torsional constants fJ  obtained using the approximate expression (28) differs from 
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the finite element values by less than one half of a percent.  Such agreement supports the 

validation of the formula expressions. 

On the other hand, note that the finite element results for the bulb-flat flange 

differ noticeably with the finite element results for an area-equivalent angle flange.  The 

centroid coordinates ( ),x y  differ considerably.  The moments cI  differ approximately 

10%.  Only the flange area results agree which is by design.  This strengthens the case 

that using an angle flange as an area-equivalent to the bulb-flat flange produces error. 

To determine the values for the area and torsional constant for the stiffener that 

includes the web and bulb-flat flange together, let the stiffener have total height sh .  The 

stiffener area formula is given by 

 ( )s f w f s f wA A A A h h t= + = + −  (29) 

The membrane analogy for uniform torsion is a useful tool for visualizing the 

distribution of shearing stress in beam cross-sections and provides justification for 

approximating the torsional constant of the stiffener.  If a membrane of constant thickness 

were stretched over a beam cross-section, fixed against the boundary of the cross-section, 

and filled with a gas exerting normal pressure on the membrane surface, the volume 

under the membrane is proportional to the torque-carrying capacity of the cross-section.  

Additionally, the torque-carrying capacity of a cross-section composed of several 

components is greater, but not much greater, than the sum of the components treated 

separately.  Hence, the total torsional constant of the entire stiffener is approximated by 

the sum of the component torsional constants (27) and (28) 

 ( )
4

310.0231
3

f
s f w w s f

c

A
J J J t h h

I
> + = + −  (30) 

In each finite element stiffener model, eleven distinct points establish the 

boundary of the bulb-flat stiffener cross-section (see Figure 7 and Appendix C).  The 

boundary points define straight lines and 3-point arc curves.  The curves define a single 

trimmed surface.  The beam library provides the cross-sectional properties for the finite 

element models using the arbitrary shape option with the maximum allowable curvature 

error set at 0.005.  Table 5 compares the area and torsional constant calculations with 
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finite element model results.  Also, Table 5 compares the area and torsional constant 

calculations to published data from the Corus technical brochure [4]. 

    

Figure 7 MSC Patran graphs of bulb-flat stiffener boundary points for cross-
section properties 
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Figure 8 MSC Patran graph and data of a bulb-flat stiffener model 

 
Figure 9 MSC Patran graph and data of an area-equivalent angle stiffener model 
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Table 5 Comparison of stiffener values 

Variables sh , wt , bft , and r  are given.  1 (1/10) wr t=  and / 6α π=  radians. 

Percent change = 
( )

( ) 100
FE

FE

J J
J
− × .  * - absolute percent change of less than 0.01%. 

Source wt  bft  r  sh  sA  stifffenercI −  Percent 
change stiffenerJ  Percent 

change 

 mm mm mm mm mm2 mm4  mm4  
Formula 6.0 17.0 5.0 120.0 932.06 1352719 * 20534 -0.37% 
FE(bulb)     932.05 1352704 * 20609 * 
FE(angle)     932.06 1369171 1.27% 18043 -12.45% 
Corus     931.00 1353400 0.05% 15950 -22.61% 
Formula 8.0 17.0 5.0 120.0 1172.00 1676051 * 33894 -0.91% 
FE(bulb)     1172.00 1676034 * 34204 * 
FE(angle)     1172.00 1694072 1.08% 30413 -11.08% 
Corus     1170.00 1681000 0.30% 27730 -18.93% 
Formula 7.0 19.0 5.5 140.0 1242.45 2448920 * 34535 -0.46% 
FE(bulb)     1242.44 2448895 * 34694 * 
FE(angle)     1242.44 2475783 1.10% 30482 -12.14% 
Corus     1240.00 2448000 -0.04% 27080 -21.95% 
Formula 10.0 19.0 5.5 140.0 1662.34 3206519 * 67721 -1.25% 
FE(bulb)     1662.33 3206493 * 68575 * 
FE(angle)     1662.34 3236434 0.93% 61791 -9.89% 
Corus     1660.00 3215600 0.28% 57520 -16.12% 
Formula 7.0 22.0 6.0 160.0 1460.10 3788414 * 47037 -0.26% 
FE(bulb)     1460.09 3788380 * 47160 * 
FE(angle)     1460.10 3831830 1.15% 41325 -12.37% 
Corus     1460.00 3788600 * 36810 -21.95% 
Formula 9.0 22.0 6.0 160.0 1780.03 4558106 * 70991 -0.65% 
FE(bulb)     1780.02 4558068 * 71453 * 
FE(angle)     1780.03 4605079 1.03% 63240 -11.49% 
Corus     1780.00 4553200 -0.11% 57630 -19.35% 
Formula 8.0 25.0 7.0 180.0 1885.81 6188305 * 70468 -0.26% 
FE(bulb)     1885.80 6188242 * 80674 * 
FE(angle)     1885.81 6261495 1.18% 70710 -12.35% 
Corus     1890.00 6189000 0.01% 63520 -21.26% 
Formula 10.0 25.0 7.0 180.0 2245.73 7289798 * 115017 -0.57% 
FE(bulb)     2245.72 7289731 * 115672 * 
FE(angle)     2245.73 7368371 1.08% 102123 -11.71% 
Corus     2250.00 7290500 0.01% 93280 -19.36% 
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In Table 5, each stiffener model contains four rows of results.  The four rows are 

referred to as a result set for clarity.  Each row is data from a different source.  The first 

row in each result set is data from the formulas for the bulb-flat cross-section.  The 

second row in each set is data from the finite element analysis for the bulb-flat cross-

section.  The third row in each set is data from the finite element analysis for the area-

equivalent angle cross-section.  And the fourth row in each set is data from the Corus 

technical data brochure. 

Comparing the first two rows of each stiffener result set compares the formula 

results to the finite element results.  The independent sources agree almost exactly on the 

stiffener area values sA  and the values for the polar moments stiffenercI − .  The formula 

values for the torsional constants stiffenerJ  obtained using the approximate expression (30) 

differs from the finite element values by less than two percent. 

Comparing the second and third rows of each stiffener result set compares the 

finite element results of the bulb-flat to the finite element results of the area-equivalent 

angle cross-section.  The two sources agree on the stiffener area values and the values for 

the polar moments.  However there is a marked difference for the torsional constant 

values.  Comparing the second and fourth rows of each stiffener result set compares the 

finite element results of the bulb-flat to the Corus technical data.  The sources agree on 

the stiffener area values sA  and the values for the polar moments.  The torsional constant 

values differ between 16% and 23%.  The reason for the difference appears to be the lack 

of accuracy when using the idealization method to determine the torsional constant value. 

In summary, this chapter presents expressions used to determine the planar 

properties of the bulb-flat cross-section.  Stiffened plate analysis requires property value 

accuracy.  Five independent parameters, web thickness, bulb thickness, two radii of 

curvature, and the slope angle uniquely define the bulb-flat flange geometry.  The 

essential planar property formula (5) takes the form of an integral.  All of the property 

values involve integral (5).  The conventional methods of determining the torsional 

constant are not viable due to the asymmetrical cross-section of the bulb-flat geometry 

and the complicated equations that define the cross-section boundary.  Expression (28) is 

developed from Saint Venant’s one-term approximate expression and serves as a working 



 34

formula that yields very accurate results compared to finite element methods, thus 

supporting its validation.  Using the approximate expression provides values that are 

more accurate than those obtained by idealizing the bulb-flat flange as an equivalent 

angle flange.  The torsional constant for the bulb-flat stiffener is 15% - 23% higher than 

understood previously.  In previous studies, the torsional nature of the bulb-flat was 

calculated using the torsional properties of an area-equivalent angle flange stiffener.  

From Table 5, the torque-carrying capacity of the bulb-flat stiffener is found to be greater 

than that of an area-equivalent angle stiffener. 
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III.  STIFFENED PLATE BUCKLING 
 
 
 

A. INTRODUCTION 

This chapter deals with the buckling behavior of a stiffened plate.  One method of 

analyzing the behavior of structural members is by deriving the governing differential 

equation and determining the exact solution using an appropriate differential equation 

technique.  When the solution is difficult or impossible to determine, as is the case with 

stiffened plate structures, approximate methods of analysis are used.  The Rayleigh-Ritz 

method is an effective alternate method that yields an approximate solution.  The chapter 

presents an analytic expression for the buckling load of a rectangular stiffened plate, with 

one bulb-flat stiffener attached to one side, where the plate structure is subjected to axial 

compression.  The results of the single stiffener analysis can be extended and applied to 

plate structures with more than one bulb-flat stiffener.  Additionally, the analytic 

expression can be used to study the behavior of stiffened plates with different flange 

geometries. 

B.  ASSUMPTIONS 

The fundamental assumptions are taken from Danielson [9], modified as 

appropriate, and stated as follows: 

(i) Each plate-stiffener unit of width b  undergoes an identical deformation. 

(ii) The plate and web obey the nonlinear Von Karman plate equations (see 

Timoshenko and Gere [21]).  The flange obeys the nonlinear beam equations 

derived by Bleich [1]. 

(iii) The plate and stiffener material is elastic, homogeneous, and isotropic. 

(iv) Every particle on the bottom surface of a web undergoes the same 

displacement as the corresponding particle on the top surface of the plate, and 

every line of particles in a web normal to the plate surface remains normal to 

the deformed plate at its surface.  In other words, the bases of the stiffeners 

are clamped to the plate. 
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(v) The prebuckling displacements are less than the maximum thickness of the 

structure and independent of the transverse coordinate. 

(vi) The incremental buckling extensional strains at the midsurface of the plate 

and web are negligible. 

(vii) The incremental buckling displacements may be approximated by the 

fundamental harmonic in their Fourier expansions. 

(viii) The plate and web are so thin that their thicknesses are negligible compared to 

their width, length, and wavelength of deformation. 

(ix) The stiffener flange has a solid cross-section with a length that is much greater 

than its largest cross-sectional dimension.  Hence, the stiffener flange can be 

treated as a beam. 

(x) The flange undergoes only lateral bending and torsion, no vertical bending. 

C.  ENERGY PRINCIPLE 

The energy method for the solution of elastic stability problems is based on an 

extremum principle of mechanics that uses an energy criterion to characterize the 

equilibrium condition of the elastic system.  A more precise statement of the energy 

criterion is made in Danielson [5] and is recapitulated in the following discussion. 

Let IP  denote the potential energy of a system in equilibrium state I .  Let IIP  

denote the potential energy in a neighborhood of equilibrium state I .  Let [ ]P u  

represent the increment in potential energy of the elastic system in transition by 

displacement field u  from state I  to a neighboring state.  In addition, let [ ]P u  be 

expandable into the following component terms (functionals) 

 [ ] [ ] [ ] [ ]1 2 3P u P u P u P u= + + +  

where [ ]1P u  refers to linear terms (functionals) with respect to u , [ ]2P u  refers to 

quadratic terms (functionals) with respect to u , and so forth.  Hence 

 [ ] [ ] [ ] [ ]1 2 3II IP P P u P u P u P u− = = + + +  



 37

If [ ] 0P u >  for all non-vanishing neighborhoods of displacement fields u , then 

the fundamental equilibrium state I  is stable.  In a practical sense, stability here means 

that a force, stress, shock, or disturbance of the system does not cause an excessive 

change or dramatic departure of the equilibrium state to a neighboring state or 

configuration.  If there exists a displacement field for which [ ] 0P u < , the fundamental 

equilibrium state I  is unstable.  Because the elastic system is in equilibrium, the linear 

term of the potential energy increment must vanish.  That is, equilibrium requires 

[ ]1 0P u = .  The condition necessary for stability is [ ]2 0P u > .  The critical case of neutral 

equilibrium occurs when there exists a displacement field 1u  such that [ ]2 1 0P u =  and 

[ ]2 1 0P u u≠ > .  In this case, the displacement field 1u  is the buckling mode, and the 

value of the load that corresponds to this displacement field is called the bifurcation-

buckling load.  Stated mathematically, 

 [ ]20 P u≤  (31) 

is the criterion used to determine the buckling mode and load given the properly defined 

total potential energy functional for the stiffened plate structure. 

D.  SIMPLY SUPPORTED RECTANGULAR STIFFENED PLATE 

For the stiffened plate structure, the Cartesian coordinate system ( )1 2 3, ,x x x  is 

adopted from Danielson’s work to aid result comparison and to minimize confusion with 

the flange cross-sectional coordinate systems ( ),x y  and ( ),c cx y .  Consider a simply 

supported rectangular plate of length a , width b , and thickness pt , with a longitudinal 

stiffener whose ends are also simply supported.  The stiffener divides the width of the 

plate in halves and is composed of a thin web (treated as a plate element) of height wh  

and thickness wt , and a bulb-flat flange (treated as a beam-column element).  Suppose the 

stiffened plate structure is under axial compression due to a uniform normal stress σ .  

The quadratic terms of the total potential energy functional for this single stiffened plate 

unit at the instance of buckling can be expressed as 
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 [ ]2 plate web flange plate web flange,P W V U U U T T T= + + − − −  (32) 

( )1 2,W W x x=  and ( )1 3,V V x x=  are the deflection fields (modes) of the plate 

and stiffener, respectively.  Subscripts on W  and V  denote partial differentiation with 

respect to the coordinate system, e.g. 
2

12
1 2

WW
x x
∂=

∂ ∂
.  In expression (32), iU  denotes the 

internal potential energy as a result of strains for element i , and iT  denotes the potential 

energy of the external loads applied to element i .  According to Timoshenko and Gere 

[21, pp. 337, 340, and 350] the internal potential energy expressions due to strains for the 

plate and web are taken as 

 ( ) ( ){ }
2

2 2
plate 11 22 11 22 12 1 2

0
2

1 2 1
2

b
a

p
b

U D W W W W W dx dxν
−

 = + − − − ∫ ∫  (33) 

 ( ) ( ){ }2 2
web 11 33 11 33 13 1 3

0 0

1 2 1
2

wh a

wU D V V V V V dx dxν  = + − − − ∫ ∫  (34) 

The potential energy expression for the external loads applied to the plate and web are 

taken as 

 
2

2
plate 1 1 2

0
2

1
2

b
a

p
b

T t W dx dxσ
−

= ∫ ∫  (35) 

 2
web 1 1 3

0 0

1
2

wh a

wT t V dx dxσ= ∫ ∫  (36) 

Due to assumption (x), the internal potential energy expression for the flange is 

 ( )
3

2 2
flange 11 13 1

0

1
2 w

a

xc f x h
U EI V GJ V dx

=
= +∫  (37) 

taken from Timoshenko and Gere [21, p. 25, eq. 1-52 and p. 265, eq. 6-30].  The value of 

xcI  is determined from expression (88). 
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The potential energy of the external load for the flange is the sum of the products 

of the external forces and the displacements of their points of application in the direction 

of the forces.  As the flange buckles, the stresses on the end surfaces may change to 

dσ σ+ .  Considering small deformations, the assumption is that the end conditions are 

such that the work done by dσ  may be neglected in comparison with the work done by 

σ .  Hence the change in potential energy for each fiber in the cross-section of the flange 

is 

 ( )flange cdT dAσ δ=  (38) 

Each fiber carries a load dAσ  and displaces longitudinally a relative distance cδ .  The 

displacement is due to two reasons: the curvature of the fiber and the change in the 

longitudinal stress.  Bleich explains and shows that the potential energy due to the change 

in longitudinal stress vanishes.  Hence the change in potential energy for each fiber is due 

to fiber curvature only.  The potential energy of the external load for the flange is derived 

here and follows the outline in Bleich [1, pp. 126-127] and Chajes [2, pp. 204-207]. 

Figure 10 Top view of fiber curvature during buckling 

cδ

a S  
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Let cδ  denote the relative fiber displacement due to the curvature of the flange as 

it buckles under axial compression.  The distance cδ  is equal to the difference between 

the arc length S  of the fiber due to bending and the chord length a  of the fiber.  Hence 

 c S aδ = −  

The potential energy of the external load for the flange is obtained by integrating over the 

cross-sectional area of the flange.  Thus 

 flange 2 3c
A

T dx dxσ δ= ∫∫  (39)  

To determine cδ , consider a cross-section of the flange at distance 1x  along the 

length of the flange.  The centroid of the cross-section coincides with the coordinate 

origin. 

Due to buckling, the point with coordinates ( ),c cx y  in the cross-section of the flange will 

change coordinates to ( ),c c c cx x y y+ ∆ + ∆ , where cx∆  and cy∆  are functions of 1x .  Let 

the point of rotation of the cross-section have coordinates ( ),ξ ζ  relative to the centroid 

of the cross-section.  Movements of the point of rotation define the displacement of 

Figure 11 Flange cross-section with centroidal coordinate system 

cx

cy
( ),ξ ζ

( )1w x

( )1v x

( )1xβ
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points in the cross-section: ( )1w x  in the cx  direction, ( )1v x  in the cy  direction, and 

( )1xβ  counterclockwise rotation about the point of rotation.  Hence 

 
cos sin
sin cos

c c c

c c c

x x w x
y y v y

ξ ξβ β
ζ ζβ β

∆ − + −−      
= −      ∆ − + −      

 

Since only small deformations are considered, simplification of the right-hand side gives 

 
( )
( )

1
1

c c c c

c c c c

x x w x w y v
y y v y v x w

ξ ξ ζ β ββ
ζ ζ ξ β ββ

 ∆ − + − − − −−      
= − =        ∆ − + − + − +        

 

Using the Pythagorean theorem, and considering 
1

c
c

d x x
dx
∆ ′= ∆  and 

1

c
c

d y y
dx
∆ ′= ∆  to be 

small, yields 

( ) ( ) ( ) ( )
1/ 22 2 2 2

1 1
0 0

11 1
2

a a

c c c c cS a x y dx x y dxδ
     ′ ′ ′ ′= − = + ∆ + ∆ − ≈ ∆ + ∆         
∫ ∫  

The potential energy of the external load for the flange is given by 

 ( ) ( )2 2

flange 1
0

1
2

a

c c c c
A

T x y dx dx dyσ  ′ ′= ∆ + ∆  ∫∫ ∫  (40) 

Using the geometrical relations for the area, first and second moments of the flange 

cross-section (assuming the centroid and coordinate origin coincide), 

 

( ) ( )2 2

0

c c f
R

c c c c c c
R R

c c c c f
R

dx dy A

x dx dy y dx dy

x y dx dy Iξ ζ

=

= =

− + − =

∫∫

∫∫ ∫∫

∫∫

 

the quadratic terms of the potential energy due to external loads are given by 

 ( )2 2 2
flange 1

0

1 2 2
2

a

f f f fT A v w A v A w I dxσ ξ β ζ β β ′ ′ ′ ′ ′ ′ ′= + − + + ∫  (41) 
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Movements in the cx  direction affected by ( )1w x  are assumed negligible, by assumption 

(x), compared to cy  direction movements perpendicular to the surface of the web 

yielding 

 ( )2 2
flange 1

0

1 2
2

a

f f fT A v A v I dxσ ξ β β′ ′ ′ ′= − +∫  (42) 

The point of rotation of the cross-section is taken to be the point centered on and at the 

top of the web.  This selection provides continuity of the motion at the top of the web and 

the flange.  The point of rotation is located half way between points 4 and 5 as shown in 

Figure 3 found on page 9.  Relative to the orientation of the flange, ξ  is the vertical 

distance from the centroid to the point of rotation.  For the bulb-flat cross-section 

 ( )f fh x x hξ = − = − −  (43) 

and 

 ( )
2

2 1
2f c f f wI I A x h y t

  = + − + −  
   

 (44) 

where x  is determined from (83) and y  is determined from (84).  A lateral movement of 

the point of rotation ( )1v x  equates to ( )1, wV x h .  A rotation or twist about the point of 

rotation of the flange ( )1xβ  equates to ( )3 1, wV x h . 
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1.  Energy Functional 

The quadratic terms of the total potential energy functional of a single stiffened 

plate unit at the instance of buckling can be expressed as 

( ) ( ){ }

( ) ( ){ } ( )
3

2

2
2 2

11 22 11 22 12 1 2
0

2

2 2 2 2
11 33 11 33 13 1 3 11 13 1

0 0 0

2
2 2

1 1 2 1
0 0 0

2

1 2 1
2

1 12 1
2 2

1
2

w

w

plate web flange plate web flange

b
a

p
b

h a a

w xc f x h

b
a a

p w
b

P U U U T T T

D W W W W W dx dx

D V V V V V dx dx EI V GJ V dx

t W dx dx t V

ν

ν

σ

−

=

−

= + + − − −

 = + − − − 

 + + − − − + + 

− +

∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ( )( )
3

2 2
1 3 1 1 13 13 1

0

2
w

w

h a

f f f f x h
dx dx A V A x h VV I V dx

=

 
 + + − + 
  

∫ ∫

(45) 

The boundary conditions of the stiffened plate structure are 

 ( ) ( )2 20, , 0W x W a x= =  (46) 

 ( ) ( )11 2 11 20, , 0W x W a x= =  (47) 

 ( ) ( )3 30, , 0V x V a x= =  (48) 

 ( ) ( )11 3 11 30, , 0V x V a x= =  (49) 

 ( ) ( )1 1,0 ,0V x W x=  (50) 

 ( ) ( )3 1 2 1,0 ,0V x W x=  (51) 

2.  Approximate Solution 

The Rayleigh-Ritz method is a very effective technique that finds an approximate 

solution to problems requiring the first variation of the total potential energy functional to 

vanish.  The method is summarized in two steps.  First, assume an admissible solution 

containing unknown coefficients that satisfy the boundary conditions of the problem.  

Second, substitute the assumed solution into the functional and determine the value of the 

unknown coefficients that minimizes the functional.  From experimental observation and 

by assumption (vii), the deflection of the plate panel is assumed 
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 ( ) 1 2
1 2, sin sinm x xW x x c

a b
π π=  (52) 

where c  is an arbitrary constant.  The value m  is the number of half waves in the 

buckling mode along the longitudinal axis and is taken to be the integer that gives the 

lowest value for the buckling load.  The deflection of the stiffener is assumed 

 ( ) ( )1
1 3 3, sin m xV x x c f x

a
π=  (53) 

where ( )3f x  is a function to be determined.  Expressions (52) and (53) satisfy boundary 

conditions (46) - (49).  Boundary conditions (50) and (51) transform to the following 

conditions: 

 ( )0 0f =  (54) 

 ( )0f
b
π′ =  (55) 

Hence, 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22 2 4 2 2 2
2 2

2 1 22 2 2

22
2

1 3 3 3 3 3 32

3 2 2 2
2 2

2 3 32 2 2 2

1 1 Term Term
4 2

Term 2 1

Term 2
2

p xc w f w

w

p
w f w f f w

c m mb a m b bP D b EI f h GJ f h
ab a mb a

b m aD f x f x f x f x f x dx
a m

t b b b bt f x dx A f h A x h f h

π σ
π

π ν
π π

π π π π

  ′= + + + + − 
 

     ′′ ′′ ′= − + − +       

′= + + + −

∫

∫ ( ) ( )
2

2
2w f w

bf h I f h
π

′+

 (56) 

where the omitted limits of integration are from 3 0x =  to 3 wx h= . 
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Applying the stability criteria (31) yields 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2
2 2

1 2 2

3 2 2 2 2
2 2 2

3 32 2 2 2 2

22
2

1 3 3 3 3 3 32

1 Term
2

2
2

Term 2 1

p xc w f w

cr
p

w f w f f w w f w

w

mb a m b bD b EI f h GJ f h
a mb a

t b b b b bt f x dx A f h A x h f h f h I f h

b m aD f x f x f x f x f x dx
a m

πσ

π π π π π
π ν

π π

  ′+ + + + 
 ≤

′ ′+ + + − +

     ′′ ′′ ′= − + − +       

∫

∫
 (57) 

where a proper selection of ( )3f x  minimizes the upper bound for the buckling load. 

Notice that in the case of a plate panel with no stiffener, only the first terms of the 

numerator and denominator in (57) remain and the buckling load value is 

 

2

22

3 2

2

1
2

2

p

cr p
p p

mb aD b
mb aa mb D

t b t b a mb
πσ

π

 +    ≤ = + 
 

 (58) 

where m  is one of the two integers closest to /a b .  Expression (58) agrees with the well-

known solution for the buckling of a plate that has length a , width b , and is simply 

supported at all edges. 

When there is a thin-webbed stiffener but no flange, the web deflection assumes 

the form 

 ( ) 3
3

xf x
b

π=  (59) 
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and the buckling load is the value 

 
( )

22

3 3

2

1 1 2 1
2 3

2 3

w
p w w

cr
p w w

m hmb aD b D h
a mb a

t b t h

π ν
σ

π

   + + + −    
     ≤

+
 (60) 

3.  General Buckling Mode and Load 

Common conjectures for ( )3f x  include 

 ( ) 3
1 3 sinw

w

h xf x
b h

π=  (61) 

 ( ) 3
2 3 sin xf x

b
π=  (62) 

 ( ) 3
3 3

xf x
b

π=  (63) 

Expressions (61) - (63) satisfy boundary conditions (54) and (55). 

 
( ) ( ) ( )

( ) ( ) ( )
1 2 3

1 2 3

0 0 0 0

0 0 0

f f f

f f f
b
π

= = =

′ ′ ′= = =
 

When (61) - (63) are substituted into (53), they yield the following stiffener deflection 

approximations: 

Figure 12 Plate and web deflection when there is no flange 
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( )

( )

( )

31
1 1 3

31
2 1 3

31
3 1 3

, sin sin

, sin sin

, sin

w

w

h xm xV x x c
a b h

xm xV x x c
a b

xm xV x x c
a b

ππ

ππ

ππ

 
=  

 
 =  
 
 =  
 

 

Linear combinations of (61) - (63) are often used to achieve better accuracy in 

approximating the stiffener deflection.  The deflection mode function can be assumed in 

the form of a series of functions with undetermined coefficients.  If the series of functions 

is complete, by increasing the number of terms in the series the approximation for the 

buckling load converges from above to the exact buckling load value.  Functions (61) - 

(63) belong to a family of functions whose members satisfy the boundary conditions.  

Functions belonging to such a family are of the form 

 ( ) 3
3 sin ,   0w

w

h xf x
b h

µ π µ
µ

= ≠  (64) 

Note that 

 ( ) 3 3
3lim lim sinw

w

h x xf x
b h bµ µ

µ π π
µ→∞ →∞

 
= = 

 
 

Continuing with the Rayleigh-Ritz method, substitution of the assumed web 

deflection (64) into the general buckling load expression (57) yields 
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 (65) 
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where the value of µ  is chosen to minimize the expression.  One method of determining 

µ  is by setting equal to zero the ordinary derivative of the quotient expression (65) with 

respect to µ  and solving for µ .  The value can also be obtained graphically.  Three 

special values 1µ = , 2µ = , and µ → ∞  relate to three special deflection modes. 

For 1µ = , the deflection mode becomes ( ) 3
3 sinw

w

h xf x
b h

π=  and the buckling 

load is 

 

22

3 3

2 2

1 1
2 2

2 2

w
p w w f

w
cr

p w w
f

mhmb a aD b D h GJ
a mb a mh

t b t h I
σ

π π

  + + + +  
   ≤

+ +
 (66) 

Figure 13 depicts the deflection of the structure corresponding to mode 1 that is best 

described by a bending of the web in one half-wave and a rotation of the flange about a 

point at the top of the web.  There is no flange bending along its length.  Such a mode 

could occur when the flange bending stiffness is large compared to flange torsion and 

web bending.  An example of this occurrence is a wide T flange combined with a thin 

web possessing relatively low flexural rigidity. 

 

Figure 13 Mode 1 deflection 
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For 2µ = , the deflection mode becomes ( ) 3
3

2 sin
2

w

w

h xf x
b h

π=  and the buckling load is 
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    + + + +    
    ≤

 + +  
 

 (67) 

Figure 14 depicts the deflection of the structure corresponding to mode 2.  This deflection 

corresponds to a significant bending of the flange and web with no flange torsion.  This 

mode could occur when the flange torsional stiffness is large compared to flange and web 

bending. 

For µ → ∞ , the deflection mode becomes ( ) 3
3

xf x
b

π=  and the buckling load is 
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       ≤

+ + + − +
 (68) 

 

Figure 15 depicts the deflection of the structure corresponding to mode 3.  This deflection 

corresponds to the flange exhibiting a combination of bending and twisting while the web 

tends to remain straight.  Such a mode could occur when the web flexural stiffness is 

Figure 14 Mode 2 deflection 

Figure 15 Mode 3 deflection 
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large compared to flange bending and torsion effects.  This case is likely to occur when 

the flange offers little or no additional stiffness to the plate structure compared to the 

contribution of the web. 

The value of µ  can be interpreted to indicate the deflection behavior based on the 

three special deflection modes. 

 

Mode Flange bending Flange torsion Web bending
1 1 No Yes Yes
2 2 Yes No Yes
3 Yes Yes No

µ

∞
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4.  Buckling Expression Summary 

The following summarizes the analytic expressions that predict the critical 

buckling load and buckling behavior of a rectangular stiffened plate with a thin webbed 

stiffener and solid flange treated as a beam.  The general expression involves a constant 

µ  determined graphically.  The value of µ  indicates the deflection behavior. 

General Buckling Load Expression ( )0µ ≠  

( )
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   + − + + −   
   

2

sin cos cosfIπ π π
π µ µ µ
    +    
    

 

Mode 1 Expression ( )1µ =  
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Mode 2 Expression ( )2µ =  
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Mode 3 Expression ( )µ → ∞  
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The three special mode expressions provide initial approximations for the upper bound of 

the buckling load value.  Once the proper value of µ  is estimated, the general expression 

provides a value that is less than or equal to the lowest initial approximation. 
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5.  Example 

As an example, consider a stiffened plate structure, simply supported on all sides, 

subjected to an axial compression load along the longitudinal axis, with the following 

parameters. 

Material properties: 

 30,000 ksi 0.3E ν= =  

Plate properties: 

 
72  inches 1829 mm
20 inches 508 mm
0.3125 inches 7.9375 mmp

a
b

t

= =
= =
= =

 

Web properties: 

 
4.1338 inches 105 mm
0.2362 inches 6 mm

s

w

h
t

= =
= =

 

Bulb-flat flange properties: 

 
1

0

0.6693 inches 17 mm

0.1969 inches 5 mm
0.0236 inches 0.6 mm

= /6 radians 30

bft

r
r

α π

= =

= =
= =

=

 

A Maple 8 worksheet provides: 

 

83840 36212 4 3.3233
0.8106 0.5202 0.3214 0.3694
0.0309 0.0321 0.2100
926071 370796

p w w

f f

xc f f

xc f

D D m h
h A x y
I J I

EI GJ

= = = =
= = = =
= = =
= =
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The following figure shows the graph of the general expression for the buckling 

load of the plate with a bulb-flat stiffener. 

 

Figure 16 Maple 8 graph of the buckling load for the bulb-flat 
stiffened plate example 
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Table 6 Results for the bulb-flat stiffened plate example 

Description 
σ ≤ Buckling Load 

(psi) 
Remarks 

Plate without stiffener 26773 (58) 

Plate stiffened with no flange 27581 
(60) 

3.02% above the no stiffener 
value. 

Mode 1 44380 (66) 

Mode 2 31262 (67) 

Mode 3 31801 (68) 

General Expression 27802 

Graphically and (65). 

3.02µ =  

3.84% above the no stiffener 
value. 

0.80% above the no flange value. 

Without stiffening, the plate is predicted to buckle at a load less than or equal to 26773 

psi.  When a flangeless web of height 3.3233 in.wh =  is added to the plate panel, the 

plate buckles at a load of less than or equal to 27581 psi.  Based on the value for µ , the 

buckling behavior is predicted to exhibit flange bending and torsion with relatively little 

web bending.  The given flange cross-section adds relatively little additional stiffness 

compared to the web stiffness. 

E.  FINITE ELEMENT ANALYSIS 

Numerical and experimental investigations give insight about the behavior of 

stiffened plates and serve as a basis of comparison to theoretical predictions.  The results 

of finite element analyses for several stiffened plate models using MSC Nastran 

2001/Patran 2001-r3 software are compared to analytical predictions to establish a degree 

of confirmation. 
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Several simply supported rectangular plate structures serve as finite element 

models.  Each plate structure has a plate panel of length a , width 2b , and thickness pt  

such that pt b a< .  The stiffener divides the width of the plate in halves.  Each plate 

panel half extends b  units of length from the web to the simply supported edge.  The 

stiffener includes a thin web of length a , height wh , and thickness wt  such that 

w wt h a< .  Four flange configurations are examined: no flange, bulb-flat flange, 

circular flange, and T-flange.  Each stiffened plate structure is subjected to axial 

compression due to a uniform normal stress σ , which increases to the buckling load.  

The boundary of the plate panel is simply supported at all edges.  The stiffener is simply 

supported at the ends. 

The derived analytical expressions in the previous section were modeled 

assuming a plate panel of width b .  This coincides with the analysis of a single plate unit 

containing a single longitudinal stiffener that would be part of a larger plate structure 

where b  units of length separate each stiffener.  In this discussion, the plate structure is 

modeled with width 2b , as shown in Figure 17.  The boundary conditions are now 

 
( ) ( )
( ) ( )

1 1

22 1 22 1

, , 0

, , 0

W x b W x b

W x b W x b

− = =

− = =
 

Figure 17 Stiffened plate pre-buckling and buckling mode 

2b

2x

3x  
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Consistency with the finite element model analysis of the 2b  width model requires 

changing the limits of integration associated with the plate energy terms plateU  and plateT  

from 2 / 2x b= ±  to 2x b= ± .  The fundamental problem and its mode shapes remain 

unchanged. 

A secondary aim of the finite element analysis is to estimate the effects of several 

variables or factors.  The intention is to discern the sensitivity of the analytic expression 

accuracy due to the variability of web height, flange area, and flange configuration.  The 

web height variable is examined at two levels, the flange area at four levels, and the 

flange configuration at four levels.  The plate panel parameters for all models remain 

fixed at the following values: 

 
72  inches 1829 mm
20 inches 508 mm
0.3125 inches 7.9375 mmp

a
b

t

= =
= =
= =

 

A 105 mm stiffener with a bulb-flat flange (see model 1 from Table 2) has a web height 

of 84.41 mm.  This is the web height used for the first set of plate models.  A 120 mm 

stiffener with a bulb-flat flange (see model 1 from Table 2) has a web height of 99.41 

mm.  This is the web height used for the second set of plate models.  The web thickness 

is fixed at 6 mm. 

 
Web height 1:  84.41 mm
Web height 2:  99.41 mm
Web thickness: 6 mm 

w

w

w

h
h
t

=
=
=

 

There are four flange areas examined.  The first case is that for a stiffener with no flange.  

The remaining flange area values are derived from the following bulb-flat flange 

parameters (units in mm) where ( )1 1/10 wr t=  and / 6α π= . 

 

2Flange Area Level Area (mm )
1 N/A N/A N/A 0
2 6 17 5 335.59
3 6 20 5 401.69
4 6 25 5 523.39

w bft t r
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The flange parameters used for area levels 3 and 4 are not from the data in Table 2 or 

Table 3.  Analyses of these bulb-flat flanges provide an assessment of the prediction 

accuracy for non-standard parameters.  The four flange configurations examined are 

 

Flange Configuration Label Description
1 N/A No flange
2 b Bulb-flat
3 c Circular
4 t T-flange

 

For the stiffened plate structure without a flange, the web deflection mode is of the form 

(59) and the predicted buckling load is determined by 

 
( )

22

3 3

2

1 2 1
3

3

w
p w w

cr
p w w

m hmb aD b D h
a mb a

t b t h

π ν
σ

π

   + + + −    
     ≤

+
 

Otherwise the stiffener has a flange and the web deflection is of the form (64) with the 

predicted buckling load determined by 

( )

( )

2 2 222

23 3 2
2

2 2

1 2 21 sin 4 1 sin sin cos
2 2 2

21 sin sin 2 si
22

w w
p w w xc f

w

cr
p w w

f w f f w

m h m hmb a aD b D h EI GJ
a mb a m h a

t b t h
A h A x h h

µ πµ π µ π µ π πν
µ π µ π µ π µ µ

σ
µ µ π µ π µ

π µ π µ ππ π

            + + + − + − + +                      ≤
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    
+    
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Using the values from the previous two pages and converting the units from 

millimeter to inches provides the parameters for the stiffened plate models.  The 

following tables present the converted parameter values.  The data tables in Appendix C 

for the stiffened plate finite element models are in inch units (See Table 40 - Table 55).  

Converting the results back into millimeter units may yield values that differ slightly 

from those presented in previous sections. 

Table 7 Summary of stiffened plate model 1 parameters 

Configuration Flange Parameters and Properties Web Parameters 
Model 1 20.5202 infA =  3.3233 in

0.2362 in
w

w

h
t

=
=

 

No flange 
See Table 40 

No flange area Same as above 

Bulb-flat (b) 
See Table 427 

1

0.2362 in
0.6693 in

0.1969 in
(1/10) 0.0236 in

/ 6 radians
0.8106 in

w

bf

w

f

t
t

r
r t

h
α π

=
=

=
= =
=
=

 

4.1339 insh =  

Circular (c) 
See Table 48 

radius 0.4069 in
0.8138 infh

=
=

 
4.1371 insh =  

T-flange (t) 
See Table 54 

width 2.2020 in
thickness 0.2362 in

=
=

 3.5595 insh =  

 

                                                 
7 The parameters for this model configuration were used in a grillage tested by the Naval Surface 

Warfare Center.  The flange and web parameters are the same as used in the example on page 52. 
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Table 8 Summary of stiffened plate model 2 parameters 

Configuration Flange Parameters Web Parameters 
Model 2 20.6226 infA =  3.3233 in

0.2362 in
w

w

h
t

=
=

 

No flange 
See Table 40 

No flange area Same as above 

Bulb-flat (b) 
See Table 43 

1

0.2362 in
0.7874 in

0.1969 in
(1/10) 0.0236 in

/ 6 radians
0.8788 in

w

bf

w

f

t
t

r
r t

h
α π

=
=

=
= =
=
=

 

4.2021 insh =  

Circular (c) 
See Table 49 

radius 0.4452 in
0.8904 infh

=
=

 
4.2137 insh =  

T-flange (t) 
See Table 54 

width 2.6357 in
thickness 0.2362 in

=
=

 3.5595 insh =  

 

Table 9 Summary of stiffened plate model 3 parameters 

Configuration Flange Parameters Web Parameters 
Model 3 20.8113 infA =  3.3233 in

0.2362 in
w

w

h
t

=
=

 

No flange 
See Table 40 

No flange area Same as above 

Bulb-flat (b) 
See Table 44 

1

0.2362 in
0.9843 in

0.1969 in
(1/10) 0.0236 in

/ 6 radians
0.9924 in

w

bf

w

f

t
t

r
r t

h
α π

=
=

=
= =
=
=

 

4.3157 insh =  

Circular (c) 
See Table 50 

radius 0.5082 in
1.0163 infh

=
=

 
4.3396 insh =  

T-flange (t) 
See Table 54 

width 3.4343 in 87.23 mm
thickness 0.2362 in 6 mm

= =
= =

 3.5595 insh =  
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Table 10 Summary of stiffened plate model 4 parameters 

Configuration Flange Parameters Web Parameters 
Model 4 Same as model 1 3.9138 in

0.2362 in
w

w

h
t

=
=

 

No flange 
See Table 41 

No flange area Same as above 

Bulb-flat (b) 
See Table 45 

Same as model 1b 4.7244 insh =  

Circular (c) 
See Table 51 

Same as model 1c 4.7276 insh =  

T-flange (t) 
See Table 55 

Same as model 1t 4.1501 insh =  

 

Table 11 Summary of stiffened plate model 5 parameters 

Configuration Flange Parameters Web Parameters 
Model 5 Same as model 2 3.9138 in

0.2362 in
w

w

h
t

=
=

 

No flange 
See Table 41 

No flange area Same as above 

Bulb-flat (b) 
See Table 46 

Same as model 2b 4.7926 insh =  

Circular (c) 
See Table 52 

Same as model 2c 4.8042 insh =  

T-flange (t) 
See Table 55 

Same as model 2t 4.1501 insh =  

 

Table 12 Summary of stiffened plate model 6 parameters 

Configuration Flange Parameters Web Parameters 
Model 6 Same as model 3 3.9138 in

0.2362 in
w

w

h
t

=
=

 

No flange 
See Table 41 

No flange area Same as above 

Bulb-flat (b) 
See Table 47 

Same as model 3b 4.9063 insh =  

Circular (c) 
See Table 53 

Same as model 3c 4.9301 insh =  

T-flange (t) 
See Table 55 

Same as model 3t 4.1501 insh =  
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The following tables present intermediate results for the stiffened plate models. 

Table 13 Model 1 intermediate results 

Result Bulb-flat Circular T-flange
fh (in) 0.8106 0.8138 0.2362

x (in) 0.3214 0.4069 0.1181
y (in) 0.3694 0.4069 1.1010

cI (in4) 0.0526 0.0431 0.2126

xcI (in4) 0.0309 0.0215 0.2102

fJ (in4) 0.0321 0.0431 0.0090

fI (in4) 0.2100 0.1292 0.2199

xcEI (lb-in2) 926071 645945 6305666

fGJ (lb-in2) 370796 496881 104091
Mode 1 (psi) 35599 36107 34548
Mode 2 (psi) 29053 28905 31902
Mode 3 (psi) 29356 29455 35105

 

Table 14 Model 2 intermediate results 

Result Bulb-flat Circular T-flange
fh (in) 0.8788 0.8904 0.2362

x (in) 0.3413 0.4452 0.1181
y (in) 0.4145 0.4452 1.3179

cI (in4) 0.0773 0.0617 0.3633

xcI (in4) 0.0473 0.0308 0.3604

fJ (in4) 0.0449 0.0617 0.0109

fI (in4) 0.3119 0.1851 0.3720

xcEI (lb-in2) 1417646 92544310813397

fGJ (lb-in2) 517932 711879 126078
Mode 1 (psi) 36164 36946 34614
Mode 2 (psi) 29261 29001 34229
Mode 3 (psi) 30474 30553 40794

 



 62

Table 15 Model 3 intermediate results 

Result Bulb-flat Circular T-flange
fh (in) 0.9924 1.0163 0.2362

x (in) 0.3753 0.5082 0.1181
y (in) 0.4886 0.5082 1.7172

cI (in4) 0.1361 0.1047 0.8011

xcI (in4) 0.0872 0.0524 0.7974

fJ (in4) 0.0735 0.1047 0.0144

fI (in4) 0.5564 0.3142 0.8125

xcEI (lb-in2) 2617311 157119723921250

fGJ (lb-in2) 848126 1208613 166564
Mode 1 (psi) 37428 38882 34713
Mode 2 (psi) 29798 29247 41024
Mode 3 (psi) 33128 33117 57198

 

Table 16 Model 4 intermediate results 

Result Bulb-flat Circular T-flange
fh (in) 0.8106 0.8138 0.2362

x (in) 0.3214 0.4069 0.1181
y (in) 0.3694 0.4069 1.1010

cI (in4) 0.0526 0.0431 0.2126

xcI (in4) 0.0309 0.0215 0.2102

fJ (in4) 0.0321 0.0431 0.0090

fI (in4) 0.2100 0.1292 0.2199

xcEI (lb-in2) 926071 645945 6305666

fGJ (lb-in2) 370796 496881 104091
Mode 1 (psi) 34602 35109 33551
Mode 2 (psi) 28862 28657 32783
Mode 3 (psi) 29541 29495 37813
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Table 17 Model 5 intermediate results 

Result Bulb-flat Circular T-flange
fh (in) 0.8788 0.8904 0.2362

x (in) 0.3413 0.4452 0.1181
y (in) 0.4145 0.4452 1.3179

cI (in4) 0.0773 0.0617 0.3633

xcI (in4) 0.0473 0.0308 0.3604

fJ (in4) 0.0449 0.0617 0.0109

fI (in4) 0.3119 0.1851 0.3720

xcEI (lb-in2) 1417646 92544310813397

fGJ (lb-in2) 517932 711879 126078
Mode 1 (psi) 35166 35947 33618
Mode 2 (psi) 29148 28791 35980
Mode 3 (psi) 30844 30672 45530

 

Table 18 Model 6 intermediate results 

Result Bulb-flat Circular T-flange
fh (in) 0.9924 1.0163 0.2362

x (in) 0.3753 0.5082 0.1181
y (in) 0.4886 0.5082 1.7172

cI (in4) 0.1361 0.1047 0.8011

xcI (in4) 0.0872 0.0524 0.7974

fJ (in4) 0.0735 0.1047 0.0144

fI (in4) 0.5564 0.3142 0.8125

xcEI (lb-in2) 2617311 157119723921250

fGJ (lb-in2) 848126 1208613 166564
Mode 1 (psi) 36430 37882 33718
Mode 2 (psi) 29886 29129 45307
Mode 3 (psi) 33964 33430 67754
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The following pictures show the deflection of the plate and web at the onset of 

buckling for Model 1b.  The plate and web panels buckle in 4 half waves along the 

longitudinal axis.  The bulb-flat flange is not visible, but its properties exist in the curve 

that defines the top of the web. 

 
 

Figure 18 MSC Nastran picture 1 for stiffened plate Model 1b 

Figure 19 MSC Nastran picture 2 for stiffened plate Model 1b 
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Figure 20 Maple 8 graph 1 of the buckling loads for Model 1  
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Figure 21 Maple 8 graph 2 of the buckling loads for Model 1 
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Figure 22 Maple 8 graph of the buckling load for the bulb-flat 
configuration of Model 1 
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The pictures below show the difference in the buckling behavior between models 

2b and 3b.  In each picture, the top of the web has the beam characteristics of a bulb-flat 

flange.  The flange in the left picture has an area property of 0.6226 in2.  The flange in the 

right picture has an area property of 0.8113 in2.  These properties are not visible in the 

pictures, but exist in the curve that defines the top of each web.  The web height in both 

pictures is 3.3233 in.  From Table 20, the µ  values for the left and right pictures are 2.57 

and 2.25 respectively.  This indicates there is more lateral bending of the Model 2b flange 

at the onset of buckling, which agrees with the pictures shown above. 

Figure 23 MSC Nastran pictures showing the buckling behavior of the webs 
with bulb-flat flanges for Models 2b (left) and 3b (right) 
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The pictures below show the difference in the buckling behavior between models 

4b, 5b, and 6b from left to right respectively.  The flanges have area properties of 0.5202 

in2, 0.6226 in2, and 0.8113 in2, respectively.  The web height in the pictures is 3.9138 in.  

From Table 20, the µ  values are 2.68, 2.40, and 2.11, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pictures above show the difference in the buckling behavior between models 4t and 

6t.  The flanges have area properties of 0.5202 in2 and 0.8113 in2, respectively.  The web 

height in the pictures is 3.9138 in.  From Table 22, the µ  values are 1.51 and 1.08, 

respectively. 

Figure 24 MSC Nastran pictures showing the buckling behavior of 
the webs with bulb-flat flanges for Models 4b (left), 5b (center), and 6b 
(right) 

Figure 25 MSC Nastran pictures showing 
the buckling behavior of the webs with T-flanges 
for Models 4t (left) and 6t (right) 

^ 
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The following tables show the formula predictions and finite element results. 

Table 19 No flange FE results 

Model# FE Results (psi) Analytic Prediction (psi) Percent Change 
1-3 26928 27181 0.94% 
4-6 26892 27138 0.91% 

 

Table 20 Bulb-flat FE results 

Model# FE Results (psi) Analytic Prediction (psi) µ  Percent Change
1b 27672 28397 2.86 2.62% 
2b 27877 28824 2.57 3.40% 
3b 28203 29642 2.25 5.10% 
4b 27663 28425 2.68 2.75% 
5b 27881 28908 2.40 3.68% 
6b 28217 29852 2.11 5.79% 

 

Table 21 Circular FE results 

Model# FE Results (psi) Analytic Prediction (psi) µ  Percent Change
1c 27558 28246 2.78 2.50% 
2c 27703 28524 2.54 2.96% 
3c 27936 29000 2.29 3.81% 
4c 27498 28178 2.65 2.47% 
5c 27654 28469 2.44 2.95% 
6c 27907 28996 2.21 3.90% 

 

Table 22 T-flange FE results 

Model# FE Results (psi) Analytic Prediction (psi) µ  Percent Change
1t 28767 31864 1.85 10.77% 
2t 29030 33200 1.45 14.36% 
3t 29291 34220 1.15 16.83% 
4t 28739 32146 1.51 11.85% 
5t 28933 32945 1.23 13.87% 
6t 29119 33460 1.08 14.91% 
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Table 19 compares the results for the stiffened plates without flanges.  The 

formula values nearly agree with the finite element results.  Table 20 compares the bulb-

flat configurations for each model.  The formula values are less than 6% above the finite 

element results.  Examination of the µ  values indicates that the buckling behavior of the 

stiffened plates tend to have significant bending of the flange and web with a degree of 

flange torsion.  This type of buckling behavior can be seen in the Nastran pictures on the 

previous pages.  As the flange areas increase between models 1, 2, and 3, and also 

between models 4, 5, and 6, the µ  values tend to approach the value 2, indicating 

perhaps an increasing torsional rigidity effect.  The buckling loads tend to increase as the 

flange area increases, as expected.  Overall, the results indicate that at the onset of 

buckling, the bulb-flat stiffened plate structures deflect with a combination of flange 

bending and torsion along with web bending.  Table 21 compares the circular flange 

configurations, which appear to buckle at a slightly lower value than the bulb-flat 

configurations, but behave similar to them at the onset of buckling.  Table 22 compares 

the T-flange configurations.  From the finite element results, the buckling load of a plate 

with a bulb-flat stiffener is 3% - 4% less than that of a plate with a T-flange stiffener with 

the same cross-sectional area.  Based on the µ  values for the T-flange configuration, 

bending of the flange tends to decrease as the cross-sectional area increases.  The 

difference in the formula values from the finite element values could be due to 

fundamental assumption (ix).  Though the T-flange is solid, treating the flange as a thin 

web plate strip instead of a beam may achieve more accurate predictions.  This may 

explain the increase in error for the bulb-flat and T-flange cases as the area increases due 

to flange widening.  The increasing error is less pronounced for the circular flange 

models. 
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IV.  FINDINGS AND CONCLUSIONS 
 
 
 
The following summarizes the major findings and conclusions of this work.  Each 

major finding or conclusion is stated followed by explanatory comments. 

• Determined cross-sectional boundary equations for the bulb-flat flange cross-

section. 

In order to conduct an accurate analysis of the bulb-flat cross-section, it is 

necessary to determine equations that define or at least approximate the boundary that is a 

closed bounded plane region.  The equation that defines the boundary of a simple 

geometric cross-section like a circle or ellipse is well known.  The boundary equation for 

uncommon and asymmetric cross-sections is often very difficult to define.   As a result of 

this study, functions exist that define the boundary of the bulb-flat flange cross-section. 

• Derived planar property value expressions. 

Determining the critical buckling load of a stiffened plate structure requires 

knowledge of several planar property values of the plate’s cross-section.  Based on the 

boundary equations and the application of multivariable calculus, the double integral 

provides expressions for calculating the various planar properties of the bulb-flat flange 

cross-section.  Though the integral expressions are complicated, they could be simplified 

by assigning fixed values to certain variables. 

• Determined an approximate torsional constant expression that is more 

accurate than idealizing. 

The Saint-Venant torsional constant is one of the key property values involved in 

the analysis of stiffened plate structures.  Due to the uncommon shape and asymmetrical 

property of the bulb-flat cross-section, determining the exact expression for the Saint-

Venant torsional constant is difficult and does not exist in published literature.  As a 

result of this study, an approximate expression exists for the Saint-Venant torsional 

constant of a specified class of bulb-flat cross-sections.  The approximate expression is  a 

one-term function relating the cross-sectional area to the polar moment of inertia.  The 
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approximate expression is more accurate than the estimate obtained by idealizing the 

cross-section as an angle flange. 

• Demonstrated that the torsional property of the bulb-flat stiffener is better than 

previously understood.  The torque-carrying capacity of a bulb-flat stiffener 

(possessing no structural flaws) is greater than that of an area-equivalent angle 

stiffener. 

In previous investigations the torsional nature of the bulb-flat stiffener was 

idealized as an angle flange stiffener.  That is, the bulb-flat flange cross-section was 

treated like a rectangular cross-section in regards to the torsional and warping properties.  

Such treatment imputed error in the calculation of the bulb-flat stiffener’s torsional 

rigidity resulting in conservative estimates.  Finite element analysis indicates that the 

torque-carrying capacity of a bulb-flat stiffener (possessing no structural flaws) is greater 

than that of an area-equivalent angle stiffener. 

• Derived a general expression to predict the buckling load due to the stiffener 

tripping of a simply supported rectangular stiffened plate subjected to axial 

compression.  In the investigation, the predicted value is less than 6% higher 

than the finite element result.   

Understanding the elastic stability of stiffened plate structures is important to the 

analyst, designer, and educator involved in the analysis and design of structures.  Use of 

the energy method provides a technique to derive a general expression for the buckling 

load due to the stiffener tripping of a simply supported rectangular stiffened plate 

subjected to axial compression.  As a result of this study, a useful analytic expression 

exists that allows the user to predict the critical buckling load and the buckling behavior 

of a stiffened plate at the onset of stiffener tripping.  The onset of stiffener tripping 

negates the stiffener’s support to the plate panel and leads to eventual collapse of the 

structure.  The general expression involves a constant called µ  that is determined 

graphically.  The value of µ  can be interpreted to indicate the deflection behavior based 

on three special deflection modes. 
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Mode Flange bending Flange torsion Web bending
1 1 No Yes Yes
2 2 Yes No Yes
3 Yes Yes No

µ

∞

 

Finite element analyses of several stiffened plate models is presented to validate 

the analytic expressions and assess the sensitivity of the formulas to factor variability.  

Knowledge of MSC Nastran/Patran software and finite element principles along with the 

Maple 8 computer environment was essential for this investigation. 

• Demonstrated that the buckling behavior of the bulb-flat stiffened plate is 

markedly unlike that of the T-flange configuration.  The bulb-flat tends to 

buckle more laterally and have a lower buckling load value than an area-

equivalent T-flange stiffened plate. 

The bulb-flat stiffened plate tends to buckle in a Mode 2 fashion, while the T-

flange stiffened plate tends to buckle in a Mode 1 fashion.  Hence, the torsional superior 

bulb-flat tends to bend laterally at the onset of stiffener tripping, while the flexural 

superior T-flange tends to twist axially at the onset of stiffener tripping. 

As a result of this investigation, several essential future research directions exist.  

Future research should include: 

• Investigating methods to determine the µ  value by other than graphical 

means. 

• Investigating the use of conformal mapping to determine the exact expression 

for the bulb-flat torsional constant. 

• Investigating solutions to the torsion problem for asymmetric cross-sections. 

• Conducting investigations of other flange cross-sections, multiple stiffener 

configurations, and grillages. 

• Conducting further investigations of the T flange by treating the flange as a 

thin web plate strip instead of a beam.  This treatment may achieve more 

accurate predictions for the T-flange buckling loads. 

• Developing algorithms that increase efficiency in stiffened plate analysis and 

design. 
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APPENDIX A.  THE BULB-FLAT FLANGE HEIGHT FORMULA 
 
 
 
This appendix presents the derivation of the formula for the height of the bulb-flat 

flange cross-section.  Maple 8 computer environment software was used to derive some 

of the formula final forms.  Five independent variables uniquely determine a specific 

bulb-flat cross-section. 

wt  Thickness of the web (length) 

bft  Thickness of the flange bulb (length) 

r  Radius of curvature of flange bulb and neck curve (length) 

1r  Radius of curvature of the cross-section corner (length) 

α  Slope angle of the flange neck (radians) 

It will be shown that only three of the independent variables, , and bft r α , determine the 

height of the flange.  Throughout this discussion, it is assumed 0 / 2α π< < .  The 

following figures show a model of the bulb-flat flange oriented horizontally with the bulb 

extended to one side of the web. 
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Figure 26 Bulb-flat flange geometry 

Figure 27 MSC Patran Bulb-flat flange boundary 
points for cross-section properties 

bft  
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The three circles in Figure 26 show the radii of curvature at the corners of the flange.  

The height of the flange, denoted fh , is the distance from the left boundary 0x =  to the 

right boundary fx h= .  Consider the line segment tangent to the two circles of radius r .  

In Figure 27, the line segment connects point 7 ( )7 7,x y  and point 8 ( )8 8,x y  where 

 7

7

is to be determined
sinw

x
y t r r α= + −

 (69) 

and 

 8

8

cos
sinw bf

x r r
y t t r r

α
α

= +
= + − +

 (70) 

The flange height can be expressed simply as 

 7 cosfh x r α= +  (71) 

Once 7x  is determined, fh  is determined from (71).  The slope of line segment is 

 ( )7 8
7 7 8 8

7 8

cot             tany yyslope x y y x
x x x

α α−∆= = = − ⇒ = − − +
∆ −

 (72) 

From (69) and (70) 

 
( ) ( )

( )
7 8 sin sin

2 1 sin
w w bf

bf

y y t r r t t r r

t r

α α

α

− = + − − + − +

= − + −
 (73) 

From (72) and (73) 

 7 8 tan 2 tan 2 sec 2 cosbfx x t r r rα α α α− = − + −  (74) 

and 

 7 tan 2 tan 2 sec cosbfx t r r r rα α α α= + − + −  (75) 

Substituting (75) into (71) yields the following formula. 

 ( )tan 1 2 tan 2secf bfh t rα α α= + − +  (76) 
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APPENDIX B.  THE PLANAR PROPERTY FORMULAS 
 
 
 
The purpose of this appendix is to present the derivation of the planar property 

formulas for the bulb-flat flange.  It is assumed 0 / 2α π< <  throughout the discussion. 

Let the closed bounded plane region R  be defined by 0 fx h≤ ≤ , 

( ) ( )g x y f x≤ ≤ , with ( )f x  and ( )g x  on 0, fx h ∈   , such that 

 ( )
( ) ( ) ( )
( )

( ) ( ) ( )

22
1

2

22
3

,    0

,    cos

,   

cos

cos

cos

w bf

f

w f f f

f x r x r x

f x mx b r r x h

f x r x h x

t t r r r

f x r

t r h r h

α

α

α

α

= + − − ≤ <

= + + ≤ <

= − − − ≤ ≤

 + − +
= −

 + −

 (77) 

and 

 ( ) ( ) ( )
( )

22
1 1 1 1 1

2 1

,   0

0,   f

g x r r x r x r
g x

g x r x h

 = − − − ≤ <= 
= ≤ ≤

 (78) 

where 

 ( )
( )

cot
cot csc 1

tan 1 2 tan 2sec
w bf

f bf

m
b t t r

h t r

α
α α

α α α

= −
= + + + −

= + − +

 (79) 

By the theorem of integrability of a piecewise function8, since f  and g  are piecewise 

defined functions on the same closed interval, then f  and g  are integrable on the same 

closed interval.  The planar property formulas can be determined from the following 

expression where ,m n  are nonnegative integers. 

( )

( )

( ) ( ){ }1 1

0 0

1
1

f fh hf x
n nm n m n m

R g x

x y dA x y dydx x f x g x dx
n

+ +
   = = −   +∫∫ ∫ ∫ ∫  

                                                 
8 Ross, K.A., Elementary Analysis: The Theory of Calculus, Springer, New York, pp. 258-259. 
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( ) ( )

( )

( ) ( )

( ) ( )

2 1

2
cos

1

cos
0

1

2
0

12
1

2

1 sin cos cos
1

1 cot cot csc
1

1 sin cos cos
1

1 1 sin 1 cos cos
1

f

nmm n
w bf

R

h r
nm

w bf
r r

m n
f w

m nm n

x y dA r r t t r r r d
n

x x t t r r r dx
n

h r t r r r d
n

r d
n

π α

π

α

α

πα

π

θ θ θ θ

α α α

θ θ θ θ

θ θ θ θ

−
+

−

−
+

+

+

−

++ +

−

= + + − +
+

+ − + + + + −
+

+ + + −
+

− + −
+

∫∫ ∫

∫

∫

∫

 

where 

 
( )tan 1 2 tan 2sec

0 , , 0
2 2 2

f bf

f

h t r

x h

α α α
π π πα θ

= + − +

< < − ≤ ≤ ≤ ≤
 

By definition, the area of the closed bounded plane region R  is the value of the integral 

 
( )

( )

( ) ( )0 0

0 0

Area
f fh hf x

R R g x

x y dA dA dy dx f x g x dx= = = = −∫∫ ∫∫ ∫ ∫ ∫  

Hence, 

( ) ( ) ( ) ( ) ( )
1

1

coscos

1 2 3 1 2
0 cos cos 0

f f f

f

h r h hrr r

R r r h r r

dA f x dx f x dx f x dx g x dx g x dx
αα

α α

−+

+ −

= + + − −∫∫ ∫ ∫ ∫ ∫ ∫  

( ) ( )

( ) ( )

cos2

cos
2
0 0

2
1

2 2

cos cos cot cot csc

cos cos 1 cos cos

fh r

w bf w bf
R r r

w

dA t t r r r d x t t r r r dx

t r r r d r d

π α α

π α

π πα

θ θ θ α α α

θ θ θ θ θ θ

− −

+−

− −

= + − + + − + + + + −

+ + − − −

∫∫ ∫ ∫

∫ ∫

Integrating and collecting terms yields the area of the bulb-flat flange: 

( ) ( ) ( )2 2
1

2

1 1 2 tan 2 sec 1 tan sec
4

1 tan tan
2

f w bf

bf w bf

A r r rt rt

t t t

π α α α α

α α

 = − − + + − + + − + 
 

+ +
 (80) 
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Other planar property formulas are determined in similar fashion and are 

summarized below (algebraic expansion omitted). 

( )

( )

( ) ( )

0 1

2 2

2
cos

2

cos
0 0

2 23
1

2 2

1 cos cos
2

1 cot cot csc
2

1 1cos cos 1 cos cos
2 2

f

x
R R

w bf

h r

w bf
r r

w

M x y dA y dA

t t r r r d

x t t r r r dx

t r r r d r d

π α

π

α

α

π πα

θ θ θ

α α α

θ θ θ θ θ θ

−

−

−

+

− −

= =

= + − +

+ − + + + + −

+ + − − −

∫∫ ∫∫

∫

∫

∫ ∫

 (81) 

( )( )

( )

( )( ) ( )( )

1 0

2

2
cos

cos
0 0

3
1

2 2

sin cos cos

cot cot csc

sin cos cos 1 sin 1 cos cos

f

y
R R

w bf

h r

w bf
r r

f w

M x y dA x dA

r r t t r r r d

x x t t r r r dx

h r t r r r d r d

π α

π

α

α

π πα

θ θ θ θ

α α α

θ θ θ θ θ θ θ θ

−

−

−

+

− −

= =

= + + − +

+ − + + + + −

+ + + − − + −

∫∫ ∫∫

∫

∫

∫ ∫

 (82) 

 y

f

M
x

A
=  (83) 

 x

f

My
A

=  (84) 
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( )

( )

( ) ( )

0 2 2

2 3

2
cos

3

cos
0 0

3 34
1

2 2

1 cos cos
3

1 cot cot csc
3

1 1cos cos 1 cos cos
3 3

f

xx
R R

w bf

h r

w bf
r r

w

I x y dA y dA

t t r r r d

x t t r r r dx

t r r r d r d

π α

π

α

α

π πα

θ θ θ

α α α

θ θ θ θ θ θ

−

−

−

+

− −

= =

= + − +

+ − + + + + −

+ + − − −

∫∫ ∫∫

∫

∫

∫ ∫

 (85) 

( ) ( )

( )

( ) ( ) ( ) ( )

2 0 2

2
2

2
cos

2

cos
0 0

2 24
1

2 2

sin cos cos

cot cot csc

sin cos cos 1 sin 1 cos cos

f

yy
R R

w bf

h r

w bf
r r

f w

I x y dA x dA

r r t t r r r d

x x t t r r r dx

h r t r r r d r d

π α

π

α

α

π πα

θ θ θ θ

α α α

θ θ θ θ θ θ θ θ

−

−

−

+

− −

= =

= + + − +

+ − + + + + −

+ + + − − + −

∫∫ ∫∫

∫

∫

∫ ∫

(86) 

( )( )

( )

( )( )

( )( )

1 1

2 2

2
cos

2

cos
0

2

2
0

24
1

2

1 sin cos cos
2

1 cot cot csc
2

1 sin cos cos
2

1 1 sin 1 cos cos
2

f

xy
R R

w bf

h r

w bf
r r

f w

I x y dA xy dA

r r t t r r r d

x x t t r r r dx

h r t r r r d

r d

π α

π

α

α

πα

π

θ θ θ θ

α α α

θ θ θ θ

θ θ θ θ

−

−

−

+

−

−

= =

= + + − +

+ − + + + + −

+ + + −

− + −

∫∫ ∫∫

∫

∫

∫

∫

 (87) 

 2
xc xx fI I A y= −  (88) 
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 2
yc yy fI I A x= −  (89) 

 xyc xy fI I A x y= −  (90) 

 c xc ycI I I= +  (91) 
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APPENDIX C.  DATA TABLES 
 
 
 
This appendix presents flange, stiffener, and plate data tables used to model the 

cross-sections for finite element analysis.  When creating a finite element model of a 

structure, a matrix represents the structure.  The information in the left portion of each 

table list parameters or references related to the set of points contained in the right 

portion of the table. 

1. DATA FOR BULB-FLAT FLANGE CROSS-SECTION  

See Figure 3 and Figure 5. 

Table 23 Data for Flange Model 1 in Table 2 (units in mm) 

1

6
17

5
(1/10) =6/10

/ 6
20.59

335.59

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 0.6000 0.0000][0.1757 0.1757 0.0000][0.6000 0.0000 
0.0000][20.5885 0.0000 0.0000][20.5885 6.0000 0.0000][18.0885 
6.6699 0.0000][16.2583 8.5000 0.0000][9.3301 20.5000 
0.0000][5.0000 23.0000 0.0000][0.0000 18.0000 0.0000] 

 

Table 24 Data for Flange Model 3 in Table 2 (units in mm) 

1

8
17

5
(1/10) =8/10

/ 6
20.59

376.71

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 0.8000 0.0000][0.2343 0.2343 0.0000][0.8000 0.0000 
0.0000][20.5885 0.0000 0.0000][20.5885 8.0000 0.0000][18.0885 
8.6699 0.0000][16.2583 10.5000 0.0000][9.3301 22.5000 
0.0000][5.0000 25.0000 0.0000][0.0000 20.0000 0.0000] 
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Table 25 Data for Flange Model 5 in Table 2 (units in mm) 

1

7
19

5.5
(1/10) =7/10

/ 6
22.82

422.19

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 0.7000 0.0000][0.2050 0.2050 0.0000][0.7000 0.0000 
0.0000][22.8205 0.0000 0.0000][22.8205 7.0000 0.0000][20.0705 
7.7369 0.0000][18.0574 9.7500 0.0000][10.2631 23.2500 
0.0000][5.5000 26.0000 0.0000][0.0000 20.5000 0.0000] 

 

Table 26 Data for Flange Model 7 in Table 2 (units in mm) 

1

10
19

5.5
(1/10) =10/10=1

/ 6
22.82

490.54

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 1.0000 0.0000][0.2929 0.2929 0.0000][1.0000 0.0000 
0.0000][22.8205 0.0000 0.0000][22.8205 10.0000 
0.0000][20.0705 10.7369 0.0000][18.0574 12.7500 
0.0000][10.2631 26.2500 0.0000][5.5000 29.0000 
0.0000][0.0000 23.5000 0.0000] 

 

Table 27 Data for Flange Model 8 in Table 2 (units in mm) 

1

7
22

6
(1/10) =7/10

/ 6
25.63

519.51

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 0.7000 0.0000][0.2050 0.2050 0.0000][0.7000 0.0000 
0.0000][25.6299 0.0000 0.0000][25.6299 7.0000 
0.0000][22.6299 7.8038 0.0000][20.4338 10.0000 
0.0000][11.1962 26.0000 0.0000][6.0000 29.0000 
0.0000][0.0000 23.0000 0.0000] 
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Table 28 Data for Flange Model 10 in Table 2 (units in mm) 

1

9
22

6
(1/10) =9/10

/ 6
25.63

570.70

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 0.9000 0.0000][0.2636 0.2636 0.0000][0.9000 0.0000 
0.0000][25.6299 0.0000 0.0000][25.6299 9.0000 
0.0000][22.6299 9.8038 0.0000][20.4338 12.0000 
0.0000][11.1962 28.0000 0.0000][6.0000 31.0000 
0.0000][0.0000 25.0000 0.0000] 

 

Table 29 Data for Flange Model 12 in Table 2 (units in mm) 

1

8
25

7
(1/10) =8/10

/ 6
29.52

681.94

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 0.8000 0.0000][0.2343 0.2343 0.0000][0.8000 0.0000 
0.0000][29.5167 0.0000 0.0000][29.5167 8.0000 
0.0000][26.0167 8.9378 0.0000][23.4545 11.5000 
0.0000][13.0622 29.5000 0.0000][7.0000 33.0000 
0.0000][0.0000 26.0000 0.0000] 

 

Table 30 Data for Flange Model 14 in Table 2 (units in mm) 

1

10
25

7
(1/10) =10/10=1

/ 6
29.52

740.89

w

bf

w

f

f

t
t

r
r t

h

A

α π

=
=

=
=
=
=

=

 

[0.0000 1.0000 0.0000][0.2929 0.2929 0.0000][1.0000 0.0000 
0.0000][29.5167 0.0000 0.0000][29.5167 10.0000 
0.0000][26.0167 10.9378 0.0000][23.4545 13.5000 
0.0000][13.0622 31.5000 0.0000][7.0000 35.0000 
0.0000][0.0000 28.0000 0.0000] 
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2. DATA FOR THE BULB-FLAT STIFFENER CROSS-SECTION 

See Figure 1, Figure 7, and Figure 8. 

Table 31 Data for first stiffener in Table 5 (units in mm) 

1

120
20.59

99.41
6
17

5
(1/10) =6/10

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][6.0000 0.0000 0.0000][6.0000 99.4115 
0.0000][6.6699 101.9115 0.0000][8.5000 103.7417 
0.0000][20.5000 110.6699 0.0000][23.0000 115.0000 
0.0000][18.0000 120.0000 0.0000][0.6000 120.0000 
0.0000][0.1757 119.8243 0.0000][0.0000 119.4000 0.0000] 

 

Table 32 Data for second stiffener in Table 5 (units in mm) 

1

120
20.59

99.41
8
17

5
(1/10) =8/10

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][8.0000 0.0000 0.0000][8.0000 99.4115 
0.0000][8.6699 101.9115 0.0000][10.5000 103.7417 
0.0000][22.5000 110.6699 0.0000][25.0000 115.0000 
0.0000][20.0000 120.0000 0.0000][0.8000 120.0000 
0.0000][0.2343 119.7657 0.0000][0.0000 119.2000 0.0000] 
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Table 33 Data for third stiffener in Table 5 (units in mm) 

1

140
22.82

117.18
7
19

5.5
(1/10) =7/10

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][7.0000 0.0000 0.0000][7.0000 117.1795 
0.0000][7.7369 119.9295 0.0000][9.7500 121.9426 
0.0000][23.2500 129.7369 0.0000][26.0000 134.5000 
0.0000][20.5000 140.0000 0.0000][0.7000 140.0000 
0.0000][0.2050 139.7950 0.0000][0.0000 139.3000 0.0000] 

 

Table 34 Data for fourth stiffener in Table 5 (units in mm) 

1

140
22.82

117.18
10
19

5.5
(1/10) =10/10=1

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][10.0000 0.0000 0.0000][10.0000 
117.1795 0.0000][10.7369 119.9295 0.0000][12.7500 121.9426 
0.0000][26.2500 129.7369 0.0000][29.0000 134.5000 
0.0000][23.5000 140.0000 0.0000][1.0000 140.0000 
0.0000][0.2929 139.7071 0.0000][0.0000 139.0000 0.0000] 

 

Table 35 Data for fifth stiffener inTable 5 (units in mm) 

1

160
25.63

134.37
7
22

6
(1/10) =7/10

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][7.0000 0.0000 0.0000][7.0000 134.3701 
0.0000][7.8038 137.3701 0.0000][10.0000 139.5662 
0.0000][26.0000 148.8038 0.0000][29.0000 154.0000 
0.0000][23.0000 160.0000 0.0000][0.7000 160.0000 
0.0000][0.2050 159.7950 0.0000][0.0000 159.3000 0.0000] 
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Table 36 Data for sixth stiffener in Table 5 (units in mm) 

1

160
25.63

134.37
9
22

6
(1/10) =9/10

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][9.0000 0.0000 0.0000][9.0000 134.3701 
0.0000][9.8038 137.3701 0.0000][12.0000 139.5662 
0.0000][28.0000 148.8038 0.0000][31.0000 154.0000 
0.0000][25.0000 160.0000 0.0000][0.9000 160.0000 
0.0000][0.2636 159.7364 0.0000][0.0000 159.1000 0.0000] 

 

Table 37 Data for seventh stiffener in Table 5 (units in mm) 

1

180
29.52

150.48
8
25

7
(1/10) =8/10

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][8.0000 0.0000 0.0000][8.0000 150.4833 
0.0000][8.9378 153.9833 0.0000][11.5000 156.5455 
0.0000][29.5000 166.9378 0.0000][33.0000 173.0000 
0.0000][26.0000 180.0000 0.0000][0.8000 180.0000 
0.0000][0.2343 179.7657 0.0000][0.0000 179.2000 0.0000] 

 

Table 38 Data for eighth stiffener in Table 5 (units in mm) 

1

180
29.52

150.48
10
25

7
(1/10) =10/10=1

/ 6

s

f

w

w

bf

w

h
h

h
t
t

r
r t
α π

=
=

=
=
=

=
=
=

 

[0.0000 0.0000 0.0000][10.0000 0.0000 0.0000][10.0000 
150.4833 0.0000][10.9378 153.9833 0.0000][13.5000 156.5455 
0.0000][31.5000 166.9378 0.0000][35.0000 173.0000 
0.0000][28.0000 180.0000 0.0000][1.0000 180.0000 
0.0000][0.2929 179.7071 0.0000][0.0000 179.0000 0.0000] 
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Table 39 Data for angle stiffener in Figure 9 (units in mm) 

120
107.53

6
17

12.47

s

wa

w

bf

f

h
h
t
t

t

=
=

=
=

=

 

[0 0 0][6 0 0][6 107.5259068 0][23 107.5259068 0][23 120 0][0 120 0]

 

3. DATA FOR THE STIFFENED PLATE MODELS 

Table 40 Data for stiffened plate models 1-3 with no flange (units in inches) 

See Table 7 for 
parameters. 

[0.0000 0.0000 3.3233][72.0000 0.0000 3.3233][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

Table 41 Data for stiffened plate models 4-6 with no flange (units in inches) 

See Table 10 for 
parameters. 

[0.0000 0.0000 3.9138][72.0000 0.0000 3.9138][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

Use the following tables to build the stiffened plate models.  In MSC Patran, 

create the geometry from the points in each table by entering the points and then create 

the curves and surfaces as appropriate.  Create a mesh (with mesh size 1) for the plate and 

web surfaces.  Create a mesh for the curve at the top of the web with topology BAR2.  

The curve will serve as the flange once the appropriate beam section is created.  Using 

the properties menu, create and name a 1D beam property set.  Use the general section 

(CBEAM) option.  Use the input properties button and then the create sections beam 

library to create and emplace the appropriate flange onto the web.  For the bulb-flat 

flange, use the beam library to create and name a bulb-flat flange by selecting the 

arbitrary shape button and the boundary loops method button.  For the input option, set 

the select surface option.  In the select surface menu, set the maximum allowable 

curvature error to 0.005.  Select the surface and press OK.  In the general beam 

(CBEAM) input properties subordinate menu, enter the appropriate material name, 
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section name (just created in the create sections beam library), and bar orientation (start 

by using the vector 0,1,0  and adjust with 1,0,0  or 0,0,1  as needed). 

Table 42 Data for bulb-flat stiffened plate model 1b (units in inches) 

See Table 7 model 
1b for parameters. 

[0.0000 -0.1181 3.3233][0.0000 0.1181 3.3233][0.0000 0.1445 
3.4217][0.0000 0.2165 3.4938][0.0000 0.6890 3.7665][0.0000 
0.7874 3.9370][0.0000 0.5906 4.1339][0.0000 -0.0945 
4.1339][0.0000 -0.1112 4.1269][0.0000 -0.1181 4.1102][0.0000 
0.0000 3.3233][72.0000 0.0000 3.3233][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

Table 43 Data for bulb-flat stiffened plate model 2b (units in inches) 

See Table 8 model 
2b for parameters. 

[0.0000 -0.1181 3.3233][0.0000 0.1181 3.3233][0.0000 0.1445 
3.4217][0.0000 0.2165 3.4938][0.0000 0.8071 3.8347][0.0000 
0.9055 4.0052][0.0000 0.7087 4.2020][0.0000 -0.0945 
4.2020][0.0000 -0.1112 4.1951][0.0000 -0.1181 4.1784][0.0000 
0.0000 3.3233][72.0000 0.0000 3.3233][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

Table 44 Data for bulb-flat stiffened plate model 3b (units in inches) 

See Table 9 model 
3b for parameters. 

[0.0000 -0.1181 3.3233][0.0000 0.1181 3.3233][0.0000 0.1445 
3.4217][0.0000 0.2165 3.4938][0.0000 1.0039 3.9484][0.0000 
1.1024 4.1189][0.0000 0.9055 4.3157][0.0000 -0.0945 
4.3157][0.0000 -0.1112 4.3088][0.0000 -0.1181 4.2921][0.0000 
0.0000 3.3233][72.0000 0.0000 3.3233][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

Table 45 Data for bulb-flat stiffened plate model 4b (units in inches) 

See Table 10 
model 4b for 
parameters. 

[0.0000 -0.1181 3.9138][0.0000 0.1181 3.9138][0.0000 0.1445 
4.0123][0.0000 0.2165 4.0843][0.0000 0.6890 4.3571][0.0000 
0.7874 4.5276][0.0000 0.5906 4.7244][0.0000 -0.0945 
4.7244][0.0000 -0.1112 4.7175][0.0000 -0.1181 4.7008][0.0000 
0.0000 3.9138][72.0000 0.0000 3.9138][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]
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Table 46 Data for bulb-flat stiffened plate model 5b (units in inches) 

See Table 11 
model 5b for 
parameters. 

[0.0000 -0.1181 3.9138][0.0000 0.1181 3.9138][0.0000 0.1445 
4.0123][0.0000 0.2165 4.0843][0.0000 0.8071 4.4253][0.0000 
0.9055 4.5958][0.0000 0.7087 4.7926][0.0000 -0.0945 
4.7926][0.0000 -0.1112 4.7857][0.0000 -0.1181 4.7690][0.0000 
0.0000 3.9138][72.0000 0.0000 3.9138][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

Table 47 Data for bulb-flat stiffened plate model 6b (units in inches) 

See Table 12 
model 6b for 
parameters. 

[0.0000 -0.1181 3.9138][0.0000 0.1181 3.9138][0.0000 0.1445 
4.0123][0.0000 0.2165 4.0843][0.0000 1.0039 4.5389][0.0000 
1.1024 4.7094][0.0000 0.9055 4.9063][0.0000 -0.0945 
4.9063][0.0000 -0.1112 4.8993][0.0000 -0.1181 4.8826][0.0000 
0.0000 3.9138][72.0000 0.0000 3.9138][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

To build the circular flange stiffened plates, ensure a mesh is created for the curve 

at the top of the web with topology BAR2.  The curve will serve as the flange once the 

appropriate beam section is created.  Using the properties menu, create and name a 1D 

beam property set.  Use the general section (CBEAM) option.  Use the input properties 

button and then the create sections beam library button to create and emplace the 

appropriate flange onto the web.  Use the beam library to create and name a flange by 

selecting the standard shape cross-section using the solid circular shape button with the 

appropriate radius dimension.  In the general beam (CBEAM) input properties 

subordinate menu, enter the appropriate material name, section name (just created in the 

create sections beam library), and bar orientation. 

Table 48 Data for circular flange stiffened plate model 1c (units in inches) 

See Table 7 model 
1c for parameters. 

[0.0000 0.0000 3.730197][72.0000 0.0000 3.730197][0.0000 
0.0000 0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 
0.0000][72.0000 -20.0000 0.0000][0.0000 20.0000 
0.0000][72.0000 20.0000 0.0000] 
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Table 49 Data for circular flange stiffened plate model 2c (units in inches) 

See Table 8 model 
2c for parameters. 

[0.0000 0.0000 3.768468][72.0000 0.0000 3.768468][0.0000 
0.0000 0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 
0.0000][72.0000 -20.0000 0.0000][0.0000 20.0000 
0.0000][72.0000 20.0000 0.0000] 

 

Table 50 Data for circular flange stiffened plate model 3c (units in inches) 

See Table 9 model 
3c for parameters. 

[0.0000 0.0000 3.831455][72.0000 0.0000 3.831455][0.0000 
0.0000 0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 
0.0000][72.0000 -20.0000 0.0000][0.0000 20.0000 
0.0000][72.0000 20.0000 0.0000] 

 

Table 51 Data for circular flange stiffened plate model 4c (units in inches) 

See Table 10 
model 4c for 
parameters. 

[0.0000 0.0000 4.320748][72.0000 0.0000 4.320748][0.0000 
0.0000 0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 
0.0000][72.0000 -20.0000 0.0000][0.0000 20.0000 
0.0000][72.0000 20.0000 0.0000] 

 

Table 52 Data for circular flange stiffened plate model 5c (units in inches) 

See Table 11 
model 5c for 
parameters. 

[0.0000 0.0000 4.359019][72.0000 0.0000 4.359019][0.0000 
0.0000 0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 
0.0000][72.0000 -20.0000 0.0000][0.0000 20.0000 
0.0000][72.0000 20.0000 0.0000] 

 

Table 53 Data for circular flange stiffened plate model 6c (units in inches) 

See Table 12 
model 6c for 
parameters. 

[0.0000 0.0000 4.422005][72.0000 0.0000 4.422005][0.0000 
0.0000 0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 
0.0000][72.0000 -20.0000 0.0000][0.0000 20.0000 
0.0000][72.0000 20.0000 0.0000] 

 

To build the T-flange stiffened plate models, the same data in Table 54 is used to 

build T-flange stiffened plate models 1t, 2t, and 3t.  The same data in Table 55 is used to 

build T-flange stiffened plate models 4t, 5t, and 6t.  Ensure a mesh is created for the 

curve at the top of the web with topology BAR2.  The curve will serve as the flange once 

the appropriate beam section is created.  Using the properties menu, create and name a 

1D beam property set.  Use the general section (CBEAM) option.  Use the input 

properties button and then the create sections beam library button to create and emplace 
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the appropriate flange onto the web.  In the beam library, create and name a standard 

shape cross-section using the solid rectangular shape button with the appropriate 

dimensions.  In the general beam (CBEAM) input properties subordinate menu, enter the 

appropriate material name, section name (just created in the create sections beam library), 

and bar orientation (start by using the vector 0,1,0  and adjust with 1,0,0  or 0,0,1  

as needed). 

Table 54 Data for T-flange stiffened plate models 1t, 2t, and 3t (units in inches) 

See Table 7 model 
1t, Table 8 model 
2t, or Table 9 
model 3t as 
appropriate for 
parameters. 

[0.0000 0.0000 3.4414][72.0000 0.0000 3.4414][0.0000 0.0000 
0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 0.0000][72.0000 
-20.0000 0.0000][0.0000 20.0000 0.0000][72.0000 20.0000 0.0000]

 

Table 55 Data for T-flange stiffened plate model 4t, 5t, and 6t (units in inches) 

See Table 10 
model 4t, Table 11 
model 5t, or Table 
12 model 6t as 
appropriate for 
parameters. 

[0.0000 0.0000 4.031951][72.0000 0.0000 4.031951][0.0000 
0.0000 0.0000][72.0000 0.0000 0.0000][0.0000 -20.0000 
0.0000][72.0000 -20.0000 0.0000][0.0000 20.0000 
0.0000][72.0000 20.0000 0.0000] 
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